РадиоКот :: Устройство задержки включения другого устройства
Например TDA7294

РадиоКот >Схемы >Цифровые устройства >Автоматика >

Теги статьи: Добавить тег

Устройство задержки включения другого устройства

Автор: Ivan99, markin89296592110@yandex.ru
Опубликовано 09.11.2015
Создано при помощи КотоРед.



   Изучая принцип работы RC-цепей и логических элементов, решил я перейти от теоретической части к более интересной - практической. В итоге закрепил знания и получил моральное удовлетворение от своего творения) Я постараюсь описать принцип работы отдельных узлов схемы насколько у меня это получится. Если будут какие поправки со стороны более опытных котов, - пишите в форум).

И так, начнём со схемы девайса. 

 

Также вашему вниманию представляю структурную схему К561ЛА7:

 

 Хочу сразу назвать аналоги К561ЛА7 - это микросхема CD4011A; диод 1N4001  - аналог КД243, транзистор КТ816 - аналог КТ814, КТ8121, BD612, BD614, TIP32. Схема незамысловата, однако (как обещал) поясню принцип работы отдельных ее узлов. Начнём с RC-цепочки. Она является главным узлом, без нее ничего б не получилось. Ниже представлено ее схематичное изображение. 

Конденсатор накапливает электрические заряды, резистор контролирует их поток. В итоге получается схема, контролирующая заряд конденсатора. Электроны движутся от плюса источника питания через резистор, который контролирует их поток, на первую обкладку конденсатора. Далее электроны переходят на вторую обкладку конденсатора, то есть происходит его заряд. Пока происходит заряд конденсатора, на выходе Vвых напряжение постепенно возрастает с 0В до напряжения источника питания (ИП). Другими словами, повышение напряжения на выходе Vвых прямопропорционально уровню заряда конденсатора. Время, через которое на выходе Vвых напряжение будет равно напряжению ИП, высчитывается по формуле:

T = R*C, где Т - постоянная времени (в секундах),  С – ёмкость конденсатора (в фарадах), R – сопротивление резистора (в омах).

 Пример: 

Допустим, у нас есть резистор на 2 мегаома и конденсатор на 15 микрофарад. Переводим мегаомы в омы (по системе Си): 2мОм=2 000 000 Ом. Микрофарады - в фарады: 15мкф=0,000015 Ф. Подставляем значения в формулу постоянной времени RC-цепочки и получаем: 

Т = 2 000 000 * 0,000015 = 30 (секунд). Получается, что в течение 30 секунд после подачи питающего напряжения, будет происходить заряд конденсатора. По истечении данного промежутка времени, он зарядится и на выходе Vвых установится напряжение, равное питающему. 

  Все бы хорошо. Можно на Vвых вешать какую-нибудь нагрузку, и схема готова! Но, нет. Не так всё просто. Допустим, питающее напряжение RC-цепи равно 5 В (вольт). На Vвых тоже будет 5 В. А каков же будет ток? Здесь нас выручает закон Ома. Возьмём сопротивление резистора 10кОм и напряжение 5 В. Сила тока вычисляется по формуле: 

I=U/R, где U - напряжение (в вольтах), R - сопротивление (в омах). 

Считаем: I = 5/10 000 = 0,0005 (А). То есть сила тока на Vвых равна 0,0005 Ампер или 0,5 мА (миллиампер). Боюсь, таким током мало что запитаешь. И здесь на помощь приходят микросхемы стандартной логики. Их уникальность состоит в том, что на их вход можно подавать логический ноль или логическую единицу с мизерными токами (порядка трех микроампер), а на их выходе управляющий ток достаточен для подключения транзисторного ключа, к примеру. Именно так я и сделал. В своей схеме я использовал отечествуенную микросхему К561ЛА7. Она и стоит недорого, и достать нетрудно, и есть зарубежный аналог CD4011A. Функциональное её назначение - 4 независимых элемента И-НЕ. Ниже представлено схематичное изображение элемента и таблица истинности: 

Вход А Вход В Выход
Низкий уровень Низкий уровень Высокий уровень
Низкий уровень Высокий уровень Высокий уровень
Высокий уровень Низкий уровень Высокий уровень
Высокий уровень Высокий уровень Низкий уровень

   Исходя из таблицы истинности, мы понимаем следующее: если на входе А и на входе В присутствует напряжение низкого уровня, то на выходе присутствует напряжение высокого уровня и наоборот. Ну а теперь смотрим на целиковую схему в начале статьи и соображаем: на оба входа логического элемента И-НЕ по истечении времени заряда конденсатора, подаётся напряжение, равное питающему (то есть Высокий уровень). На выходе элемента - Низкий уровень. Если поставим транзистор p-n-p проводимости, то получим транзисторный ключ. А это - верный шаг, который помогает всерьёз управлять какой-нибудь нагрузкой. Однако управление другим устройством при помощи транзистора означает, что: 1). диапазон питающего напряжения нагрузки равен питающему напряжению схемы задержки включения, 2). надо учитывать максимальную рассеиваемую мощность транзистора. И дабы избежать этих двух нюансов, я поставил реле. Оно коммутирует включение/выключение другого устройства. И тут есть свои плюсы: 1). гальваническая развязка, 2). возможность подключения устройств с большим напряжением и большим током. 

   Как я говорил чуть выше, микросхема К561ЛА7 - это 4 независимых друг от друга элемента И-НЕ. Согласитесь, как-то жалко из четырёх задействовать только один логический элемент. Недолго думая, я решил задействовать второй. На оба его входа также подаётся либо лог.1, либо лог.0 с RC-цепочки, на его выходе - светодиод HL1 (красный). В данном сучае он является сигнализатором заряда конденсатора (или сигнализирует о том, что управляемое устройство пока еще не включено). Что касается светодиода HL2 (зелёного), то он сигнализирует о питании катушки реле (или сигнализирует о том, что управляемое устройство включено). 

   Теперь вернёмся к вопросу о времени задержки включения. Значения сопротивления 10кОм или 10000 Ом, конденсатора - 2000мкФ или 0,002 Фарада. Перемножая оба числа, получаем время заряда Т = 20 секунд. В иделае реле должно сработать лишь через 20 секунд, но надо учитывать: происходит постепенное повышение напряжения на Vвых до напряжения ИП, а не скачообразное с 0В до напряжения ИП. Также надо учесть, что в микросхемах КМОП-технологии лог.0 - это практически нулевой потенциал, лог.1 - это напряжение, приближенное (или равное) питающему. Это означает, что на выходе элемента И-НЕ установитя сигнал низкого уровня, когда напряжение на Vвых ещё будет повышаться. И, как показала практика, при сопротивлении 10кОм и конденсаторе в 2000мкФ через 7 секунд на выходе И-НЕ устанавливаетя низкий уровень. Фууух, понимать-то понимаю, а доступно описать иногда проблематично. Надеюсь, вы меня поняли. 

   Таким образом, при вычислении Т (постоянной времени) мы имеем приблизительное представление смены на выходе логического элемента лог.1 на лог.0. А точное время узнаем эеспериментальным путём. Я собирал всё это дело на макетке и замерял секундомером этот самый промежуток времени. Он (как я уже говорил выше) равен 7 секундам. 

   Хочу отметить, что использованием лишь И-НЕ данная схема не ограничивается. Вполне реально использовать и инверторы сигнала ("НЕ"), и элементы "ИЛИ". Я собирал из того, что было под рукой, а под рукой у меня оказалась именно К561ЛА7. НО: при использовании других логиеских элементов может потребоваться установка транзистора другой проводимости (n-p-n) и соответственно изменение его включения в схему, изменение включения реле, светодиода HL2 и диода VD1. Эти изменения надо делать, исходя из таблицы истинности того логиеского элемента, который вы будете использовать в схеме! 

   Что ещё хотелось отметить... Диапазон питающего напряжения устройства: 3 - 15 Вольт. Входной ток низкого и высокого уровней минимум 0,3мкА (по даташиту). И самое главное - практическое применение устройства. Например, вы уходите из дома и включаете сигнализацию. Но вам надо закрыть за собой дверь. Для этого нужно время. Другими словами, вам надо организовать задержку включения сигнализации. На помощь приходит данное устройство. В общем каждый может придумать своё применение сему девайсу. Поэтому оставлю это дело за вами :)

   Ниже вы можете найти печатную плату устройства и схему. Также представляю фото и видео работы Если что, вот ссылка на видео: https://www.youtube.com/watch?v=kgyGkrnQdag. Если будут вопросы, как всегда - в форум. Всего вам хорошего! 



 


Файлы:

Схема устройства

Архив 7Zip
Фотография


Все вопросы в Форум.




Как вам эта статья?

Заработало ли это устройство у вас?

21 11 9
2 0 0