РадиоКот :: О линейности и повторителях (а в конце - сюрприз)
Например TDA7294

РадиоКот >Статьи >

Теги статьи: Добавить тег

О линейности и повторителях (а в конце - сюрприз)

Автор: misterzu
Опубликовано 20.05.2015
Создано при помощи КотоРед.

В этой статье я постараюсь проанализировать проблему линейности каскада, построенном на транзисторе, включенном по схеме с общим коллектором:

..и придумать что с ней можно поделать. Такой каскад так же известен под названием “эмиттерный повторитель” и обычно используется как буфер между высокоомным источником сигнала и низкоомной нагрузкой. Он не изменяет амплитуду сигнала, но возможность подключения более низкоомной нагрузки при той же амплитуде означает усиление мощности, так что этот каскад, как и другие типы транзисторных каскадов, является усилительным. Его часто можно встретить в схемах УНЧ, стоящим в качестве входного буфера. Так же существует множество любительских и не очень конструкций усилителей для головных телефонов, “сердцем” (точнее – выхлопом J), а то и единственным органом которых и является эмиттерный повторитель, построенный на одиночном или составном транзисторе.

Начнем с определения линейности усилительной цепи. Надо признаться, я сейчас загуглил этот термин в поисках откуда бы стырить красивое объяснение этого простого вроде бы по своей сути понятия – и с ходу не нашел такого. Так что придется писать самому.

Задача усилителя (если он усилитель, а не “улучшайзер”) заключается не только в том, чтобы повысить мощность сигнала, но и одновременно максимально сохранить его “форму”. Это значит к примеру, если у нас есть усилитель напряжения, усиливающий напряжение в 2 раза, то в штатных условиях он должен его усиливать именно в 2 раза, независимо от того какой именно величины в него пришел сигнал и какое сопротивление (из допустимого диапазона) имеет нагрузка, подключенная к его выходу. К примеру, рассмотрим гипотетический не идеальный усилитель, выполненный по идеологии УПТ (это значит что он может усиливать не только переменный, но и постоянный сигнал. Так проще.. объяснятьJ), и мысленно подадим ему на вход 0.1В – померяем мысленным вольтметром что на выходе – мысленно допустим, что вольтметр показал 0.1995В. Затем подадим на вход уже 1В, а на выходе при помощи того же вольтметра обнаружим 1.92В. Это значит что наш гипотетический усилитель не смог идеально выполнить свою задачу. Сигнал 0.1В он усилил в 1.995 раз, а сигнал в 1В – он усилил в 1.92 раза. Нелинейность таким образом составила примерно 1 - (1.995/1.92) = 0.039, или 3.9%. По меркам УНЧ – это просто ужасно много. Такое не прощается никаким УНЧ, кроме ламповых J. Потому этот воображаемый девайс, который выполнил свою задачу в качестве виртуального подопытного - мы так же мысленно отправим в топку.

Вернемся к эмиттерному повторителю. Казалось бы, раз он повторитель, то напряжение на его выходе просто повторяет напряжение на входе, а значит такие проблемы его не должны касаться. Возьмем супер-хороший вольтметр, соберем схемку, проверим - упс… Как же так? Чтобы разобраться - откроем даташит на какой-нибудь транзистор. Например, “народный” BD139. Мне первым нагуглился даташит производителя “Fairchild”. Пролистаем страничку с автопортретом транзистора, ненадолго остановимся на табличке “ Electrical Characteristics”:

Первое что бросается в глаза - всякие цифры, например: напряжение насыщения коллектор-эмиттер, прямое напряжение на переходе база-эмиттер и коэффициент передачи по постоянному току и некоторые другие, совершенно не касающиеся обычного эмиттерного повторителя.  А вторая важная деталь состоит в том, что эти цифры указаны не конкретно, а примерно, причем указано целых три разных коэффициента передачи - для разных условий, а потом еще одна табличка – которую кажется производитель добавил чтобы сбить нас с толку. На самом деле со второй табличкой все просто – у этого производителя существуют 3 модификации этого транзистора, обозначаемые как BD139-6, BD139-10 и BD139-16. Они различаются коэффициентом передачи. Скорее всего все они штампуются на одних и тех же линиях, затем замеряются и маркируются согласно тому что получилось в итоге из-за технологических разбросов. Цифры в первой табличке соответствуют всей линейке BD139, а вторая конкретизирует hfe3, и на основе этой конкретики можно прикинуть каков будет hfe2 и hfe1. На самом деле это еще хороший производитель, многие другие штампуют те же BD139 с максимально широким допуском, но совершенно не озабочиваются сортировкой котлет по размеру.  А у этого можно хоть прикидочно узнать этот немаловажный параметр перед покупкой. А вот с первой табличкой все намного интереснее и имеет самое прямое отношение к теме статьи. Дело в том что параметры транзистора имеют не только технологический разброс, но так же могут изменяться в зависимости от режима его работы, и судя по цифрам в табличке – могут изменяться значительно. Чтобы понять как именно и от чего они зависят – пролистаем даташит дальше, до прикольных картинок в разделе “Typical Performance Characteristics”. Вот две самые важные для нас картинки оттуда:

Разберемся, что они значат. Оба эти графика отображают зависимость характеристик транзистора от режима его работы, а точнее – от силы тока, проходящего через переход коллектор-база. Первая картинка – показывает зависимость коэффициента передачи от тока коллектора, а вторая – зависимость падения напряжения на переходе база-эмиттер от тока коллектора. На самом деле эти графики не показывают абсолютно всего, что влияет на эти два параметра, но в нормальном режиме работы каскада они таки характеризуют самый главный фактор влияния. Снова вернемся к эмиттерному повторителю. Рассмотрим, что же такого ужасного с ним будет происходить, описанного в этих двух графиках, что вместо повторителя сигнала он окажется немного “искажателем”. Если мы на вход нашего повторителя, сделанного по обычной классической схеме как в картинке из Википедии будем подавать различный сигнал, к примеру напряжением 3 и 5V, то произойдут следующие Очень Важные Вещи:

1)      Напряжение на выходе высокоомного источника сигнала будет немного зависеть от силы тока, которую с него будет тянуть повторитель.

2)      Напряжение на выходе повторителя (то есть на эмиттере транзистора) будет равняться напряжению приложенному к его входу (то есть на базе транзистора) минус падение напряжение на переходе база-эмиттер

3)      Сила тока через переход эмиттер-база будет равна напряжению на выходе повторителя, поделенному на всю ту нагрузку, которая на нем бедном висит. Закон Ома, однако: 

4)      Сила тока через коллектор будет равна силе тока, которую транзистор сосет из источника сигнала помножить на его коэффициент передачи в этот самый момент

5)      А еще сила тока через эмиттер будет  равна силе тока через коллектор + сила тока через базу. Правило Кирхгофа работает и для транзисторов тоже. Жаль только что в этих ваших интернетах не нашлось прикольной картинки для него.

Итак, режим работы транзистора определяется вышеописанными факторами. Внимательно посмотрим на первый график, для определенности уточню– на левый график. Из него получается, что коэффициент передачи тока зависит от… тока через коллектор. А ток через коллектор – определяется током через базу помножить на коэффициент передачи, который от него же зависит.. Мозг еще не сломался? Тогда продолжаем. На самом деле самое важное тут то, что с изменением напряжения на выходе транзистору будет сосать из источника ток не пропорционально ЭДС которую тот создает, а с учетом того, что его коэффициент передачи при этом так же изменяется. Источник сигнала на выходе, как помним, довольно высокоомный (по сравнению с нагрузкой). Иначе зачем мы бы вешали после него повторитель? А значит при изменении напряжения источника в N раз, напряжение на входе транзистора упадет на сопротивлении источника в не равное N раз число, ну и напряжение на выходе от этого так же пострадает. Вот она – причина нелинейность. Говоря умным языком – нелинейность коэффициента передачи транзистора в такой схеме ведет к нелинейности ее входного сопротивления, а она в свою очередь ведет к нелинейности функции Выход(вход). Но на самом деле – это не самая страшная причина. Дело в том, что нынче научились делать транзисторы с достаточно линейным коэффициентом передачи, который практически не зависит от тока коллектора. Для примера, график hfe транзистора 2sc4883:

Как видно, сумасшедшие ученые в тайных лабораториях производителей транзисторов свой кофе употребляют совершенно не напрасно и hfe от тока в адекватных пределах оного - практически не зависит. Гораздо больше кстати он зависит только от температуры, что, говорят, может являться причиной искажений термодинамической природы, но рассмотрение и практический анализ этого момента сделало бы написание статьи и ее саму капец каким долгим делом.

Теперь самое время отмотать статью назад и еще раз внимательно посмотреть на оставшийся график, отражающий зависимость падения напряжения на переходе база-эмиттер от того самого тока коллектора. Вспомним опять же, что напряжение на нагрузке зависит от этого падения и что ток коллектора зависит от нагрузки. Сложим эти два печальных факта и поймем что вот она - еще одна причина нелинейности эмиттерного повторителя. Причем, если с предыдущей можно бороться, выбирая транзисторы подороже, то с этой как следует справиться сумасшедшим ученым еще не удалось. Слишком мало кофе они еще выкурили. Но все же у разных транзисторов и в различных диапазонов тока коллектора эта зависимость имеет различный характер, потому выбирая транзистор для УНЧика стоит изучить этот график у кандидатов. К слову в связи с тем что график рисуют в самых различных масштабах - изучать его нужно только с помощью калькулятора, - поделив Vbe при крайних значениях рабочего диапазона тока.  А “на глазок” это сделать сложно.

А теперь - слайды.. То есть, практические выводы и эксперименты. Я не первый, кто заметил эту неприятность - люди борются с нею по мере возможности. Самый распространенный метод борьбы – использовать в качестве рабочей (не путать с полезной) нагрузки эмиттерного повторителя источник тока:

Чего только не используют в качестве источника тока – и токовые зеркала, и одиночные биполярные транзисторы с фиксированным смещением базы и фиксированной нагрузкой в эмиттере, и на полевых транзисторах чета мутят.. Но суть одна - стабилизация тока через эмиттер ведет к стабилизации тока через коллектор, ибо как мы помним – ток через эмиттер равен сумме токов через коллектор и базу, причем ток через базу очень мал (в hfe раз меньше тока через коллектор), а значит стабилизация тока эмиттера - неплохо стабилизирует и ток коллектора, а значит – и все характеристики транзистора, которые очень подвержены его влиянию. Беда лишь в том, что помимо рабочей нагрузки к эмиттеру обычно еще подключают и полезную нагрузку, а иначе кому такой повторитель-в-себе был бы нужен. И ток через эту нагрузку стабилизировать никак нельзя, по очевидным причинам. А значит, ток через эмиттер транзистора будет не таким уж стабильным, а сам повторитель – просто более линейным чем в случае применения резистивной нагрузки, но не настолько линейным как хотелось бы например мне. И чем больший ток через нагрузку будет отдавать повторитель по сравнению с током через ИТ - тем все печальнее с линейностью всего повторителя.
Чтобы выжать из повторителя максимальную линейность нужно как-то застабилизировать ток коллектора. Но тут возникает неприятный момент – если мы стабилизируем ток коллектора в типовой схеме повторителя, то оный перестанет выполнять свои прямые функции, так как ток через эмиттерный переход будет почти константным, а значит – будет почти константным и напряжение на нагрузке… Казалось бы - печаль-беда, самое время бахнуть пивка и забить на эти транзисторы, поставив на вход повторителя ОУ и связав их обоих воедино леденящими объятиями ООС… Но настоящий джедай - всегда сражается световым мечом. Даже если в него стреляют из светового калаша. И вот извращение, применить которое можно, если очень получить хочется повторитель линейный:

“Хм, что-то это напоминает”, правда? На самом деле напоминать это должно две вещи. Во-первых то, что эта картинка скопирована из симулятора Multisim, и далее я с помощью него кое что продемонстрирую. Во-вторых – эта схема – возникла из одной из широко применяемых простейших схем источника тока:

… в которую несколько противоестественным путем был внедрен эмиттерный повторитель. В результате чего организм носителя по мере возможности стал стабилизировать ток через коллектор организма-паразита. Строго говоря это уже не каскад с общим коллектором но… Но воспользуемся мультисимом чтобы посмотреть что это нам дало, и вообще дало ли это нам хоть чтото. Итак, как пример для старта - базовый вариант эмиттерного повторителя, работающего на резистивную нагрузку:

Видим, что при потребляемом токе в 10мА повторитель повторяет сигнал в 500 Омную нагрузку, внося в него 0.087% искажений, имеющих характерный для однотактовых схем красиво спадающий спектр. Хорошо это или плохо? Все познается в сравнении. Сравним это, поставив вместо R1 источник тока (идеальный!) "размером" в те же 10мА:

 

Хм, искажений осталось только 0.024%, неплохо. А теперь этот Франкенштейн - “один-из-трех“:

Ух ты – всего 0.001%! Неплохо. Осталось проверить на практике… Но чтобы проверять на практике было интересно, я решил сделать что-нить более практичное, чем слабенький повторитель. К примеру – повторитель, способный работать в качестве того же буфер-усилителя для низкоомных наушников. Напрямую данную схему нельзя переделать для этого просто подправив номиналы резисторов. Не хватит коэффициента передачи использованных транзисторов, но - можно попробовать использовать составные. В результате в мультисиме родилась следующая схема:

(На самом деле получилось еще несколько вариантов, некоторые из которых включали полевой транзисторв вместо Q1/Q2 и были способны отдавать 3В в нагрузку 8Ом при потребляемом токе 280мА. Но я решил выбрать этот, как вроде самый лучший для данной задачи.) 

Помимо использования составных транзисторов, я тут добавил еще вспомогательный ИТ, который еще немного повысил линейность всей схемы. Так же появилась антивозбудная цепочка R3C2, но о ней позже. А вот для сравнения искажения, которые выдает повторитель с нагрузкой-ИТ с аналогичным потребляемым током в аналогичном сигнальном режиме (2Vpk on 32 Ohm load):

Но симулянтор – это конечно показательно и практично, но гораздо показательнее и практичнее – реальная практика. Потому в этот выходной я на скорую руку собрал на макетке девайс:

Первое что я обнаружил при включении – возбуд на мегагерцовых частотах. Но с высокочастотными Дарлингтонами я это уже проходил, и в схеме появились R3/C2. Фактические условия возникновения такого возбуждения зависят от применяемых элементов и разводки, так что указанные номиналы – полезны лишь как ориентир. Более того R3 поставил от балды, возможно схема будет стабильно и при меньшем его значении.  Далее я обнаружил, что рабочий ток заметно выше чем расчетный, потому сопротивление R2 на физическом макете составляло 8.2 Ома, а не 6.8 как в модели. По-видимому это объясняется или не точностью данных модели или особенностями конкретно этих транзисторов. После устранения этих мелких неприятностей схема заработала как полагается, нарисовав мне красивейший меандр от генератора осциллографа. Потом я подключил схему к EMU0404 USB и сделал несколько тестов в RMAA под нагрузкой 34 Ома (2 резистора по 68Ом спаянных).  Тест показал совпадение с точностью до погрешности предсказанного уровня THD на амплитудах 1В и 3В. После чего я сложил все в тумбочку и сел писать эту статьюJ


Файлы:
модельки для 13го Мультисима


Все вопросы в Форум.




Как вам эта статья?

Заработало ли это устройство у вас?

45 4 0
2 0 0