![]() |
![]() |
|||||||||||||||
Ультрафиолет по-китайски. GTL-3 - бюджетный стиратель УФ-ПЗУ.
Автор: ejsanyo Думаю, многие из вас помнят про такой класс запоминающих устройств под названием "ПЗУ с ультрафиолетовым стиранием"? Те самые микросхемы с "окошком" для облучения кристалла. По крайней мере, до начала "нулевых" это был один из самых широко используемых типов ПЗУ, как в виде отдельных чипов памяти (серия 27/27C и советские 573РФ), так и в составе первых микроконтроллеров. Чтобы не повторяться, для тех, кто не в курсе предлагаю почитать соответствующую статью на Википедии: https://ru.wikipedia.org/wiki/EPROM И хотя в современных устройствах такой тип памяти уже давно не используется, в практике радиолюбителей и в наши дни порой возникает необходимость стереть подобный чип. Например, для перепрошивки BIOS какой-нибудь старой материнской платы или контроллера. Но, как известно, в отличие от современных EEPROM/Flash, для стирания необходимо облучение кристалла коротковолновым ультрафиолетовым излучением ("Типа C") продолжительное время. Откуда же его взять? Возможны, например, такие варианты:
Впрочем, промышленность Поднебесной предлагает нам ещё одну альтернативу, о которой и пойдёт речь в данной статье. А конкретнее - о компактной лампе, которая обычно продаётся под обозначением GTL-3. Она довольно часто попадается на Ебее, или на том же Алиэкспрессе. При этом, в нашей стране похоже не очень известна. Продаются как лампы по отдельности, так и изделия на их основе, наподобие "устройств для дезинфекции обуви". Лампочка очень компактная, маломощная и довольно прочная. То что нужно для УФ-стирателя! Сама по себе лампа весьма примечательна своим принципом действия. Она имеет одну единственную спираль, закреплённую V-образно в колбе, заполненной парами ртути. Причём, в отличие от типичных ГРЛНД (газоразрядных ламп низкого давления) эмиссионное покрытие нанесено только верхние концы спирали. Работает это примерно так: При подаче питания спираль разогревается, активируя эмиссионный состав на концах спирали и пары ртути. При этом на концах спирали, как у любого активного сопротивления, возникает разность потенциалов. И в определённый момент её оказывается достаточно чтобы зажечь разряд между концами спирали. С этого момента разряд шунтирует оставшийся участок спирали. Таким образом, лампе не нужно никаких внешних стартёров для запуска. Более того, лампа в определённой степени обладает способностью самостабилизации своего режима работы. Так, если ток разряда уменьшается, то больше тока начнёт проходить по спирали, что увеличит её подогрев и эмиссию, а значит, вернёт интенсивность разряда. Поэтому такие лампы нередко называют "самобалансирующимися". Параметры у лампы следующие:
Само собой, китайцы не сами дошли до такого чуда техники. И наша лампочка ни что иное, как копия (сомневаюсь, что лицензионная) одноимённого изделия от японской фирмы Ushio. Также в Сети попадаются старые японские и американские лампы аналогичной конструкции. Несмотря на упомянутую способность к самозапуску и самостабилизации, данные лампы, как и любой газоразрядный прибор, требуют ограничения рабочего тока. Сами китайцы для этого предлагают просто включать лампу в розетку через конденсатор! Ёмкость его такая, чтобы ограничивать ток примерно на уровне тех же 0,3 А. Довольно часто они так и продаются комплектом: лампа, патрон и конденсатор. Такое подключение было опробовано, и да, оно действительно работает. Однако, помимо отвратительного значения коэффициента мощности, схема имеет ещё ряд существенных недостатков:
Более правильным способом будет питание лампы через понижающий трансформатор. А для ограничения рабочего тока можно использовать простейший балласт в виде сопротивления, включенного последовательно между лампой и вторичной обмоткой трансформатора. Таким образом, в моём случае схема включения лампы выглядит следующим образом: Трансформатор должен выдавать во вторичной обмотке порядка 24...27В и ток, понятное дело, не менее потребляемого лампой (я взял трансформатор на 25В и 0,6А). Для получения требуемого уровня ограничения тока суммарное сопротивление резисторов должно быть порядка 51...56 Ом. В моём случае была взята пара SQP-5 на 27 Ом каждый. Всё это хозяйство поместил в пластиковый корпус, к которому прикрутил сбоку патрон для лампы. Следует иметь ввиду, что резисторы при работе довольно сильно нагреваются (суммарная рассеиваемая мощность 5...6 Вт!) Это следует учитывать при выборе типа резистора/резисторов для схемы. Кроме того, в моём исполнении в корпусе сверху и снизу были насверлены отверстия для вентиляции, а сами резисторы расположены на некотором расстоянии от трансформатора. Изготовленное устройство было испытано с различными чипами ПЗУ. Практика показала, что для надёжного стирания требуется размещать микросхему на расстоянии между окном и столбом разряда порядка 1 см. Время стирания использовал типично рекомендуемое - 30 минут. Запах озона, характерный для ламп с колбой из кварцевого стекла, не ощущался. Неужели китайцы расщедрились на "беззоновое" стекло? В заключение напоминаю правила безопасности при работе с коротковолновым ультрафиолетовым излучением:
Кроме того, напомню, что как минимум часть схемы находится под сетевым напряжением!
Все вопросы в Форум.
Эти статьи вам тоже могут пригодиться: |
|
|||||||||||||||
![]() |
![]() |


![]() |
![]() |
|||
|
||||
![]() |
![]() |