AIMEL

Section 1

8051 Microcontroller Instruction Set

For interrupt response time information, refer to the hardware description chapter.

Instructions that Affect Flag Settings(l)

Instruction Flag Instruction Flag
C ov AC C ov AC

ADD X X CLRC o

ADDC X X CPLC X

SUBB X X ANL C,bit X

MUL 0] X ANL C,/bit X

DIV o X ORL C,bit X

DA X ORL C,/bit X

RRC X MOV C,bit X

RLC X CINE X

SETBC 1

Note: 1. Operations on SFR byte address 208 or bit addresses 209-215 (that is, the PSW or bits in the PSW) also affect flag settings.

The Instruction Set and Addressing Modes

R, Register R7-R0 of the currently selected Register Bank.

direct 8-bit internal data location’s address. This could be an Internal Data RAM location (0-127) or a SFR [i.e., /O
port, control register, status register, etc. (128-255)].

@R; 8-bit internal data RAM location (0-255) addressed indirectly through register R1or RO.

#data 8-bit constant included in instruction.

#data 16 16-bit constant included in instruction.

addr 16 16-bit destination address. Used by LCALL and LIMP. A branch can be anywhere within the 64K byte Program
Memory address space.

addr 11 11-bit destination address. Used by ACALL and AJMP. The branch will be within the same 2K byte page of
program memory as the first byte of the following instruction.

rel Signed (two’s complement) 8-bit offset byte. Used by SIMP and all conditional jumps. Range is -128 to +127
bytes relative to first byte of the following instruction.

bit Direct Addressed bit in Internal Data RAM or Special Function Register.

Atmel 8051 Microcontrollers Hardware 1

0509C-8051-07/06

ATMEL

Table 1-1. Instruction Set Summary
0 1 2 3 4 5 6 7
0 NOP JBC JB JNB JC JNC Jz JINZ
bit,rel bit, rel bit, rel rel rel rel rel
[3B, 2C] [3B, 2C] [3B, 2C] [2B, 2C] [2B, 2C] [2B, 2C] [2B, 2C]
1 AIMP ACALL AIMP ACALL AIMP ACALL AIMP ACALL
(PO) (PO) (P1) (P1) P2) P2) (P3) (P3)
[2B, 2C] [2B, 2C] [2B, 2C] [2B, 2C] [2B, 2C] [2B, 2C] [2B, 2C] [2B, 2C]
2 LIMP LCALL RET RETI ORL ANL XRL ORL
addrl6 addrl6 [2C] [2C] dir, A dir, A dir, a C, bit
[3B, 2C] [3B, 2C] [2B] [2B] [2B] [2B, 2C]
3 RR RRC RL RLC ORL ANL XRL JMP
A A A A dir, #data dir, #data dir, #data @A + DPTR
[3B, 2C] [3B, 2C] [3B, 2C] [2C]
4 INC DEC ADD ADDC ORL ANL XRL MOV
A A A, #data A, #data A, #data A, #data A, #data A, #data
[2B] [2B] [2B] [2B] [2B] [2B]
5 INC DEC ADD ADDC ORL ANL XRL MOV
dir dir A, dir A, dir A, dir A, dir A, dir dir, #data
[2B] [2B] [2B] [2B] [2B] [2B] [2B] [3B, 2C]
6 INC DEC ADD ADDC ORL ANL XRL MOV
@RO @RO A, @RO A, @RO A, @RO A, @RO A, @RO @RO0, @data
[2B]
7 INC DEC ADD ADDC ORL ANL XRL MOV
@R1 @R1 A, @R1 A, @R1 A, @R1 A, @R1 A, @R1 @R1, #data
[2B]
8 INC DEC ADD ADDC ORL ANL XRL MOV
RO RO A, RO A, RO A, RO A, RO A, RO RO, #data
[2B]
9 INC DEC ADD ADDC ORL ANL XRL MOV
R1 R1 A, R1 A, R1 A, R1 A, R1 A, R1 R1, #data
[2B]
A INC DEC ADD ADDC ORL ANL XRL MOV
R2 R2 A, R2 A, R2 A, R2 A, R2 A, R2 R2, #data
[2B]
B INC DEC ADD ADDC ORL ANL XRL MOV
R3 R3 A, R3 A, R3 A, R3 A, R3 A, R3 R3, #data
[2B]
C INC DEC ADD ADDC ORL ANL XRL MOV
R4 R4 A, R4 A, R4 A, R4 A, R4 A, R4 R4, #data
[2B]
D INC DEC ADD ADDC ORL ANL XRL MOV
R5 R5 A, R5 A, R5 A, R5 A, R5 A, R5 R5, #data
[2B]
E INC DEC ADD ADDC ORL ANL XRL MOV
R6 R6 A, R6 A, R6 A, R6 A, R6 A, R6 R6, #data
[2B]
F INC DEC ADD ADDC ORL ANL XRL MOV
R7 R7 A, R7 A, R7 A, R7 A, R7 A, R7 R7, #data
[2B]

Note: Key: [2B] = 2 Byte, [3B] = 3 Byte, [2C] = 2 Cycle, [4C] = 4 Cycle, Blank = 1 byte/1 cycle

0509C-8051-07/06

Table 1-2. Instruction Set Summary (Continued)

8 9 A B C D E F
0 SIMP MOV ORL ANL PUSH POP MOVX A, MOVX
REL DPTR,# C, /bit C, /bit dir dir @DPTR @DPTR, A
[2B, 2C] data 16 [2B, 2C] [2B, 2C] [2B, 2C] [2B, 2C] [2C] [2C]
[3B, 2C]
1 AIMP ACALL AIMP ACALL AIMP ACALL AIMP ACALL
(P4) (P4 (P5) (P5) (P6) (P6) P7) (P7)
[2B, 2C] [2B, 2C] [2B, 2C] [2B, 2C] [2B, 2C] [2B, 2C] [2B, 2C] [2B, 2C]
2 ANL MOV MOV CPL CLR SETB MOVX MOVX
C, hit bit, C C, bit bit bit bit A, @RO wRO, A
[2B, 2C] [2B, 2C] [2B] [2B] [2B] [2B] [2C] [2C]
3 MOVC A, MOVC A, INC CPL CLR SETB MOVX MOVX
@A + PC @A + DPTR DPTR C C C A, @RI @RI, A
[2C] [2C] [2C] [2C] [2C]
4 DIV SUBB MUL CINE A, SWAP DA CLR CPL
AB A, #data AB #data, rel A A A A
[2B, 4C] [2B] [4C] [3B, 2C]
5 MOV SUBB CJINE XCH DJNZ MOV MOV
dir, dir A, dir A, dir, rel A, dir dir, rel A, dir dir, A
[3B, 2C] [2B] [3B, 2C] [2B] [3B, 2C] [2B] [2B]
6 MOV SUBB MOV CJINE XCH XCHD MOV MOV
dir, @RO A, @RO @RO, dir @RO, #data, rel A, @RO A, @RO A, @RO @RO, A
[2B, 2C] [2B, 2C] [3B, 2C]
7 MOV SUBB MOV CJINE XCH XCHD MOV MOV
dir, @R1 A, @R1 @R1, dir @R1, #data, rel A, @R1 A, @R1 A, @R1 @R1, A
[2B, 2C] [2B, 2C] [3B, 2C]
8 MOV SUBB MOV CJINE XCH DJNZ MOV MOV
dir, RO A, RO RO, dir RO, #data, rel A, RO RO, rel A, RO RO, A
[2B, 2C] [2B, 2C] [3B, 2C] [2B, 2C]
9 MOV SUBB MOV CJINE XCH DJNZ MOV MOV
dir, R1 A, R1 R1, dir R1, #data, rel A, R1 R1, rel A, R1 R1, A
[2B, 2C] [2B, 2C] [3B, 2C] [2B, 2C]
A MOV SUBB MOV CJINE XCH DJNZ MOV MOV
dir, R2 A, R2 R2, dir R2, #data, rel A, R2 R2, rel A, R2 R2, A
[2B, 2C] [2B, 2C] [3B, 2C] [2B, 2C]
B MOV SUBB MOV CJINE XCH DJNZ MOV MOV
dir, R3 A, R3 R3, dir R3, #data, rel A, R3 R3, rel A, R3 R3, A
[2B, 2C] [2B, 2C] [3B, 2C] [2B, 2C]
C MOV SUBB MOV CJINE XCH DJNZ MOV MOV
dir, R4 A, R4 R4, dir R4, #data, rel A, R4 R4, rel A, R4 R4, A
[2B, 2C] [2B, 2C] [3B, 2C] [2B, 2C]
D MOV SUBB MOV CJINE XCH DJNZ MOV MOV
dir, RS A, R5 R5, dir R5, #data, rel A, R5 R5, rel A, R5 R5, A
[2B, 2C] [2B, 2C] [3B, 2C] [2B, 2C]
E MOV SUBB MOV CJINE XCH DJNZ MOV MOV
dir, R6 A, R6 R6, dir R6, #data, rel A, R6 R6, rel A, R6 R6. A
[2B, 2C] [2B, 2C] [3B, 2C] [2B, 2C]
F MOV SUBB MOV CJINE XCH DJNZ MOV MOV
dir, R7 A, R7 R7, dir R7, #data, rel A, R7 R7, rel A, R7 R7, A
[2B, 2C] [2B, 2C] [3B, 2C] [2B, 2C]

Note: Key: [2B] = 2 Byte, [3B] = 3 Byte, [2C] = 2 Cycle, [4C] = 4 Cycle, Blank = 1 byte/1 cycle

0509C-8051-07/06

ATMEL

I)

Table 1-3. AT89 Instruction Set Summary(l)

8051 Microcontroller Instruction Set

Mnemonic Description Byte | Oscillator Mnemonic Description Byte | Oscillator
Period Period
ARITHMETIC OPERATIONS LOGICAL OPERATIONS
ADD |AR, Add register to 1 12 ANL AR, AND Register to 1 12
Accumulator Accumulator
ADD | Adirect Add direct byte to 2 12 ANL A.direct AND direct byte to 2 12
Accumulator Accumulator
ADD | A @R, Add indirect RAM to 1 12 ANL A @R, AND indirect RAM to 1 12
Accumulator Accumulator
ADD | A#data Add immediate data to 2 12 ANL A #data AND immediate data to 2 12
Accumulator Accumulator
ADDC | AR, Add register to 1 12 ANL direct,A AND Accumulator to 2 12
Accumulator with Carry direct byte
ADDC | A,direct Add direct byte to 2 12 ANL direct,#data AND immediate data to 3 24
Accumulator with Carry direct byte
ADDC | A,@R; Add indirect RAM to 1 12 ORL |AR, OR register to 1 12
Accumulator with Carry Accumulator
ADDC | A #data Add immediate data to 2 12 ORL A,direct OR direct byte to 2 12
Acc with Carry Accumulator
SUBB |AR, Subtract Register from 1 12 ORL |A @R OR indirect RAM to 1 12
Acc with borrow Accumulator
SUBB | A,direct Subtract direct byte from 2 12 ORL A #data OR immediate data to 2 12
Acc with borrow Accumulator
SUBB | A,@R; Subtract indirect RAM 1 12 ORL direct,A OR Accumulator to 2 12
from ACC with borrow direct byte
SUBB | Aj#data Subtract immediate data 2 12 ORL direct,#data OR immediate data to 3 24
from Acc with borrow direct byte
INC A Increment Accumulator 1 12 XRL AR, Exclusive-OR register to 1 12
) Accumulator
INC R, Increment register 1 12
di di b XRL A,direct Exclusive-OR direct byte 2 12
INC irect Increment direct byte 2 12 to Accumulator
INC | @R Increment direct RAM 1 12 XRL |A@R; Exclusive-OR indirect 1 12
DEC |A Decrement Accumulator 1 12 RAM to Accumulator
DEC |R, Decrement Register 1 12 XRL A #data Exclusive-OR immediate 2 12
data to Accumulator
DEC |direct Decrement direct byte 2 12
XRL direct,A Exclusive-OR 2 12
DEC |@R; Decrement indirect RAM 1 12 Accumulator to direct
INC DPTR Increment Data Pointer 1 24 byte
MUL |AB Multiply A & B 1 48 XRL direct,#data Excluswg—OR immediate 3 24
data to direct byte
DIV AB Divide A by B 1 48
CLR Clear Accumulator 1 12
DA A Decimal Adjust 1 12
Accumulator CPL Complement 1 12
Accumulator
Note: 1. All mnemonics copyrighted © Intel Corp., 1980. RL Rotate Accumulator Left 1 12
RLC Rotate Accumulator Left 1 12
through the Carry
LOGICAL OPERATIONS (continued)
Atmel 8051 Microcontrollers Hardware Manual Alm l 1-4

G

0509C-8051-07/06

8051 Microcontroller Instruction Set

Mnemonic Description Byte | Oscillator Mnemonic Description Byte | Oscillator
Period Period
RR A Rotate Accumulator 1 12 MOVX | @R;,A Move Acc to External 1 24
Right RAM (8-bit addr)
RRC |A Rotate Accumulator 1 12 MOVX | @DPTR,A Move Acc to External 1 24
Right through the Carry RAM (16-bit addr)
SWAP | A Swap nibbles within the 1 12 PUSH |direct Push direct byte onto 2 24
Accumulator stack
DATA TRANSFER POP direct Pop direct byte from 2 24
. stack
MOV AR, Move register to 1 12
Accumulator XCH AR, Exchange register with 1 12
.) Accumulator
MOV | Adirect Move direct byte to 2 12
Accumulator XCH A.direct Exchange direct byte 2 12
o with Accumulator
MOV | A@R; Move indirect RAM to 1 12
Accumulator XCH |A@R; Exchange indirect RAM 1 12
)) with Accumulator
MOV | A #data Move immediate data to 2 12
Accumulator XCHD |A,@R; Exchange low-order 1 12
Digit indirect RAM with
MOV | R,.A Move Accumulator to 1 12 Acc
register
)) BOOLEAN VARIABLE MANIPULATION
MOV | R, direct Move direct byte to 2 24
register CLR C Clear Carry 1 12
MOV | R, #data Move immediate data to 2 12 CLR bit Clear direct bit 2 12
register
SETB |C Set Carry 1 12
MOV | direct,A Move Accumulator to 2 12 bi di bi
direct byte SETB it Set direct bit 2 12
MOV | direct,R, Move register to direct 2 24 CPL € Complement Carry 1 12
byte CPL |bit Complement direct bit 2 12
MOV | direct,direct Move direct byte to direct 3 24 ANL C,bit AND direct bit to CARRY 2 24
MOV | direct,@R; Move indirect RAM to 2 24 ANL C,/bit AND complement of 2 24
direct byte direct bit to Carry
MOV | direct,#data Move immediate data to 3 24 ORL C,bit OR direct bit to Carry 2 24
direct byte
ORL C,/bit OR complement of direct 2 24
MOV | @R;A Move Accumulator to 1 12 bit to Carry
indirect RAM
MOV | C,hit Move direct bit to Carry 2 12
MOV | @R;direct Move direct byte to 2 24
indirect RAM MOV | bit,C Move Carry to direct bit 2 24
MOV | @R;#data Move immediate data to 2 12 JC rel Jump if Carry is set 2 24
indirect RAM JNC rel Jump if Carry not set 2 24
MOV | DPTR, #datal6 Loaq Data Pointer with a 3 24 IB bit rel Jump if direct Bit is set 3 24
16-bit constant
) JNB bit,rel Jump if direct Bit is Not 3 24
MOVC | A,@A+DPTR | Move Code byte relative 1 24 set
to DPTR to Acc
) JBC bit,rel Jump if direct Bit is set & 3 24
MOVC | A,@A+PC Move Code byte relative 1 24 clear bit
to PC to Acc
PROGRAM BRANCHING
MOVX | A,@R; Move External RAM (8- 1 24
bit addr) to Acc ACAL |addril Absolute Subroutine Call 2 24
L
DATA TRANSFER (continued)
LCALL | addr16 Long Subroutine Call 3 24
MOVX | A, @DPTR Move Exernal RAM (16- 1 24
bit addr) to Acc RET Return from Subroutine 1 24

s AlMEL

0509C-8051-07/06

Atmel 8051 Microcontrollers Hardware Manual

Mnemonic Description Byte | Oscillator
Period

RETI Return from 1 24
interrupt

AIJMP | addril Absolute Jump 2 24

LIMP | addrl6 Long Jump 3 24

SIMP | rel Short Jump (relative 2 24
addr)

JMP @A+DPTR Jump indirect relative to 1 24
the DPTR

Jz rel Jump if Accumulator is 2 24
Zero

INZ rel Jump if Accumulator is 2 24
Not Zero

CJINE | A,direct,rel Compare direct byte to 3 24
Acc and Jump if Not
Equal

CINE | A #data,rel Compare immediate to 3 24
Acc and Jump if Not
Equal

CINE | R, #data,rel Compare immediate to 3 24
register and Jump if Not
Equal

CINE | @R #data,rel | Compare immediate to 3 24
indirect and Jump if Not
Equal

DINZ | Rprel Decrement register and 2 24
Jump if Not Zero

DJNZ | direct,rel Decrement direct byte 3 24
and Jump if Not Zero

NOP No Operation 1 12

Atmel 8051 Microcontrollers Hardware Manual

AIMEL

G

8051 Microcontroller Instruction Set

1-6

0509C-8051-07/06

8051 Microcontroller Instruction Set

Table 1-4. Instruction Opcodes in Hexadecimal Order

Hex Number | Mnemonic Operands Hex Number | Mnemonic Operands
Code of Bytes Code of Bytes

00 1 NOP 26 1 ADD A,@RO

01 2 AIMP code addr 27 1 ADD A@R1

02 3 LIMP code addr 28 1 ADD A,RO

03 1 RR A 29 1 ADD AR1

04 1 INC A 2A 1 ADD AR2

05 2 INC data addr 2B 1 ADD AR3

06 1 INC @RO 2C 1 ADD A,R4

07 1 INC @R1 2D 1 ADD A,R5

08 1 INC RO 2E 1 ADD A,R6

09 1 INC R1 2F 1 ADD AR7

0A 1 INC R2 30 3 JNB bit addr,code addr
0B 1 INC R3 31 2 ACALL code addr
oC 1 INC R4 32 1 RETI

oD 1 INC R5 33 1 RLC A

OE 1 INC R6 34 2 ADDC A #data

OF 1 INC R7 35 2 ADDC A,data addr
10 3 JBC bit addr,code addr 36 1 ADDC A @RO

11 2 ACALL code addr 37 1 ADDC A@R1

12 3 LCALL code addr 38 1 ADDC A,RO

13 1 RRC A 39 1 ADDC ARL

14 1 DEC A 3A 1 ADDC AR2

15 2 DEC data addr 3B 1 ADDC AR3

16 1 DEC @RO 3C 1 ADDC A,R4

17 1 DEC @R1 3D 1 ADDC A,R5

18 1 DEC RO 3E 1 ADDC A,R6

19 1 DEC R1 3F 1 ADDC AR7

1A 1 DEC R2 40 2 JC code addr
1B 1 DEC R3 41 2 AIMP code addr
1C 1 DEC R4 42 2 ORL data addr,A
1D 1 DEC R5 43 3 ORL data addr,#data
1E 1 DEC R6 44 2 ORL A #data

1F 1 DEC R7 45 2 ORL A,data addr
20 3 JB bit addr,code addr 46 1 ORL A,@RO

21 2 AIMP code addr a7 1 ORL A@R1

22 1 RET 48 1 ORL A,RO

23 1 RL A 49 1 ORL AR1

24 2 ADD A #data 4A 1 ORL AR2

25 2 ADD A,data addr

0509C-8051-07/06

Atmel 8051 Microcontrollers Hardware Manual

8051 Microcontroller Instruction Set

Hex Number Mnemonic Operands Hex Number Mnemonic Operands
Code of Bytes Code of Bytes
4B 1 ORL AR3 71 2 ACALL code addr
4C 1 ORL A R4 72 2 ORL C,bit addr
4D 1 ORL AR5 73 1 JMP @A+DPTR
4E 1 ORL A,R6 74 2 MOV A #data
4F 1 ORL AR7 75 3 MOV data addr,#data
50 2 JNC code addr 76 2 MoV @RO,#data
51 2 ACALL code addr 77 2 MOV @R1,#data
52 2 ANL data addr,A 78 2 MOV RO,#data
53 3 ANL data addr,#data 79 2 MoV R1,#data
54 2 ANL A #data 7A 2 MOV R2,#data
55 2 ANL A,data addr 7B 2 MOV R3,#data
56 1 ANL A,@RO 7C 2 MOV R4, #data
57 1 ANL A@R1 7D 2 MOV R5,#data
58 1 ANL A,RO 7E 2 MOV R6,#data
59 1 ANL AR1 7F 2 MOV R7,#data
5A 1 ANL AR2 80 2 SIMP code addr
5B 1 ANL AR3 81 2 AIMP code addr
5C 1 ANL A R4 82 2 ANL C,bit addr
5D 1 ANL AR5 83 1 MOVvC A @A+PC
5E 1 ANL A,R6 84 1 DIV AB
5F 1 ANL AR7 85 3 MOV data addr,data addr
60 2 JZ code addr 86 2 MoV data addr, @RO
61 2 AJMP code addr 87 2 MoV data addr,@R1
62 2 XRL data addr,A 88 2 MoV data addr,RO
63 3 XRL data addr,#data 89 2 MoV data addr,R1
64 2 XRL A #data 8A 2 MOV data addr,R2
65 2 XRL A,data addr 8B 2 MoV data addr,R3
66 1 XRL A,@RO 8C 2 MOV data addr,R4
67 1 XRL A@R1 8D 2 MOV data addr,R5
68 1 XRL A,RO 8E 2 MOV data addr,R6
69 1 XRL AR1 8F 2 MOV data addr,R7
6A 1 XRL AR2 90 3 MOV DPTR #data
6B 1 XRL AR3 91 2 ACALL code addr
6C 1 XRL A R4 92 2 MOV bit addr,C
6D 1 XRL AR5 93 1 MOVC A @A+DPTR
6E 1 XRL A,R6 94 2 SUBB A #data
6F 1 XRL AR7 95 2 SUBB A,data addr
70 2 IJNZ code addr 96 1 SUBB A,@RO

Atmel 8051 Microcontrollers Hardware Manual A_Illll® 1-8

0509C-8051-07/06

8051 Microcontroller Instruction Set

Hex Number Mnemonic Operands Hex Number Mnemonic Operands

Code of Bytes Code of Bytes

97 1 SUBB A,@R1 BD 3 CINE R5,#data,code addr
98 1 SUBB A,RO BE 3 CINE R6,#data,code addr
99 1 SUBB AR1 BF 3 CINE R7,#data,code addr
9A 1 SUBB AR2 Cco 2 PUSH data addr

9B 1 SUBB AR3 C1l 2 AIMP code addr

9C 1 SUBB A R4 Cc2 2 CLR bit addr

9D 1 SUBB AR5 C3 1 CLR C

9E 1 SUBB A,R6 C4 1 SWAP A

9F 1 SUBB AR7 C5 2 XCH A,data addr

A0 2 ORL C,/bit addr C6 1 XCH A,@RO

Al 2 AIMP code addr c7 1 XCH A@R1

A2 2 MOV C,bit addr Cc8 1 XCH A,RO

A3 1 INC DPTR co 1 XCH AR1

A4 1 MUL AB CA 1 XCH AR2

A5 reserved CB 1 XCH AR3

A6 2 MOV @RO,data addr CcC 1 XCH A R4

A7 2 MOV @R1,data addr CD 1 XCH AR5

A8 2 MOV RO,data addr CE 1 XCH A,R6

A9 2 MOV R1,data addr CF 1 XCH AR7

AA 2 MOV R2,data addr DO 2 POP data addr

AB 2 MOV R3,data addr D1 2 ACALL code addr

AC 2 MOV R4,data addr D2 2 SETB bit addr

AD 2 MOV R5,data addr D3 1 SETB C

AE 2 MOV R6,data addr D4 1 DA A

AF 2 MOV R7,data addr D5 3 DJINZ data addr,code addr
BO 2 ANL C,/bit addr D6 1 XCHD A,@RO

Bl 2 ACALL code addr D7 1 XCHD A@R1

B2 2 CPL bit addr D8 2 DJINZ RO,code addr

B3 1 CPL C D9 2 DJINZ R1,code addr

B4 3 CJINE A #data,code addr DA 2 DJINZ R2,code addr

B5 3 CJNE A,data addr,code addr DB 2 DJINZ R3,code addr

B6 3 CJINE @RO,#data,code addr DC 2 DJINZ R4,code addr

B7 3 CJNE @R1,#data,code addr DD 2 DJINZ R5,code addr

B8 3 CJNE RO,#data,code addr DE 2 DJINZ R6,code addr

B9 3 CJINE R1,#data,code addr DF 2 DJINZ R7,code addr

BA 3 CINE R2 #data,code addr EO 1 MOVX A,@DPTR

BB 3 CJINE R3,#data,code addr El 2 AIMP code addr

BC 3 CINE R4 #data,code addr E2 1 MOVX A,@RO

o AlMEL

0509C-8051-07/06

Atmel 8051 Microcontrollers Hardware Manual

Hex Number Mnemonic Operands
Code of Bytes

E3 1 MOVX A,@R1
E4 1 CLR A

E5 2 MOV A,data addr
E6 1 MOV A,@RO
E7 1 MOV A @R1
E8 1 MOV A,RO

E9 1 MOV AR1

EA 1 MOV AR2

EB 1 MOV AR3

EC 1 MOV A R4

ED 1 MOV AR5

EE 1 MOV A,R6

EF 1 MOV AR7

FO 1 MOVX @DPTR,A
F1 2 ACALL code addr
F2 1 MOVX @RO,A
F3 1 MOVX @R1,A
F4 1 CPL A

F5 2 MOV data addr,A
F6 1 MOV @RO,A
F7 1 MOV @R1,A
F8 1 MOV RO,A

F9 1 MOV R1,A

FA 1 MOV R2,A

FB 1 MOV R3,A

FC 1 MOV R4,A

FD 1 MOV R5,A

FE 1 MOV R6,A

FF 1 MOV R7,A

Atmel 8051 Microcontrollers Hardware Manual

AIMEL

G

8051 Microcontroller Instruction Set

1-10

0509C-8051-07/06

11 Instruction Definitions

ACALL addrl1

Function:

Description:

Example:

Bytes:
Cycles:
Encoding:

Operation:

0509C-8051-07/06

Absolute Call

ACALL unconditionally calls a subroutine located at the indicated address. The instruction increments the PC
twice to obtain the address of the following instruction, then pushes the 16-bit result onto the stack (low-order
byte first) and increments the Stack Pointer twice. The destination address is obtained by successively
concatenating the five high-order bits of the incremented PC, opcode bits 7 through 5, and the second byte of
the instruction. The subroutine called must therefore start within the same 2 K block of the program memory as
the first byte of the instruction following ACALL. No flags are affected.

Initially SP equals 07H. The label SUBRTN is at program memory location 0345 H. After executing the following
instruction,

ACALL SUBRTN

at location 0123H, SP contains 09H, internal RAM locations 08H and 09H will contain 25H and 01H, respectively,
and the PC contains 0345H.

2
2

al0 a9 a8 1 0 0 0 1 ‘ ‘a? a6 ab a4 a3 az2 al a0

ACALL

(PC)« (PC)+2

(SP) « (SP) +1

((SP)) « (PC7.0)

(SP) « (SP) +1

((SP)) < (PCy5.9)
(PCq0-0) < page address

AIMEL 1

I)

ATMEL

ADD A,<src-byte>
Function: Add
Description: ADD adds the byte variable indicated to the Accumulator, leaving the result in the Accumulator. The carry and
auxiliary-carry flags are set, respectively, if there is a carry-out from bit 7 or bit 3, and cleared otherwise. When
adding unsigned integers, the carry flag indicates an overflow occurred.
QV is set if there is a carry-out of bit 6 but not out of bit 7, or a carry-out of bit 7 but not bit 6; otherwise, OV is
cleared. When adding signed integers, OV indicates a negative number produced as the sum of two positive
operands, or a positive sum from two negative operands.
Four source operand addressing modes are allowed: register, direct, register-indirect, or immediate.
Example: The Accumulator holds OC3H (1100001IB), and register 0 holds 0AAH (10101010B). The following instruction,
ADD A,RO
leaves 6DH (01101101B) in the Accumulator with the AC flag cleared and both the carry flag and OV set to 1.
ADD AR,
Bytes: 1
Cycles: 1
Encoding:| O 0 1 0 1 r r r
Operation: ADD
(A) < (A) + (Rp)
ADD A, direct
Bytes: 2
Cycles: 1
Encoding:| O 0 1 0 0 1 0 1 ‘ ‘ direct address
Operation: ADD
(A) « (A) + (direct)
ADD A,@R;
Bytes: 1
Cycles: 1
Encoding:| O 0 1 0 0 1 1 i
Operation: ADD
(A) < (A) + ((R))
ADD A #data
Bytes: 2
Cycles: 1
Encoding:| O 0 1 0 0 1 0 0 ‘ ‘ immediate data
Operation: ADD
(A) « (A) + #data
12 |

0509C-8051-07/06

ADDC A, <src-byte>

Function:

Description:

Example:

ADDC AR,
Bytes:
Cycles:
Encoding:

Operation:

ADDC A, direct
Bytes:
Cycles:
Encoding:

Operation:

ADDC A,@R;
Bytes:
Cycles:
Encoding:

Operation:

ADDC A #data
Bytes:
Cycles:
Encoding:

Operation:

0509C-8051-07/06

Add with Carry

ADDC simultaneously adds the byte variable indicated, the carry flag and the Accumulator contents, leaving the
result in the Accumulator. The carry and auxiliary-carry flags are set respectively, if there is a carry-out from bit 7
or bit 3, and cleared otherwise. When adding unsigned integers, the carry flag indicates an overflow occurred.

OV is set if there is a carry-out of bit 6 but not out of bit 7, or a carry-out of bit 7 but not out of bit 6; otherwise OV
is cleared. When adding signed integers, OV indicates a negative number produced as the sum of two positive
operands or a positive sum from two negative operands.

Four source operand addressing modes are allowed: register, direct, register-indirect, or immediate.

The Accumulator holds 0C3H (11000011B) and register 0 holds 0AAH (10101010B) with the carry flag set. The
following instruction,

ADDC A,RO
leaves 6EH (01101110B) in the Accumulator with AC cleared and both the Carry flag and OV set to 1.

ADDC
(A) « (A) + (C) + (Ry)

direct address

ADDC
(A) < (A) + (C) + (direct)

ADDC
(A) « (A) + (C) + ((R})

immediate data

ADDC
(A) < (A) + (C) + #data

13

AIMEL

I)

ATMEL

AJMP addrll

Function: Absolute Jump

Description: AJMP transfers program execution to the indicated address, which is formed at run-time by concatenating the
high-order five bits of the PC (after incrementing the PC twice), opcode bits 7 through 5, and the second byte of
the instruction. The destination must therfore be within the same 2 K block of program memory as the first byte
of the instruction following AJMP.

Example: The label IMPADR is at program memory location 0123H. The following instruction,
AIMP JMPADR
is at location 0345H and loads the PC with 0123H.

Bytes: 2
Cycles: 2
Encoding:| al0 a9 a8 0 0 0 0 1‘ ‘a? a6 ab a4 | a3 a2 al a0

Operation: AJMP
(PC) « (PC) + 2
(PC10.0) « page address

ANL <dest-byte>,<src-byte>

Function: Logical-AND for byte variables

Description: ANL performs the bitwise logical-AND operation between the variables indicated and stores the results in the
destination variable. No flags are affected.

The two operands allow six addressing mode combinations. When the destination is the Accumulator, the source
can use register, direct, register-indirect, or immediate addressing; when the destination is a direct address, the
source can be the Accumulator or immediate data.

Note: When this instruction is used to modify an output port, the value used as the original port data will be read
from the output data latch, not the input pins.

Example: If the Accumulator holds 0C3H (1100001IB), and register 0 holds 55H (01010101B), then the following
instruction,

ANL A,RO
leaves 41H (01000001B) in the Accumulator.

When the destination is a directly addressed byte, this instruction clears combinations of bits in any RAM
location or hardware register. The mask byte determining the pattern of bits to be cleared would either be a
constant contained in the instruction or a value computed in the Accumulator at run-time. The following
instruction,

ANL P1,#01110011B
clears bits 7, 3, and 2 of output port 1.
ANL AR,
Bytes: 1
Cycles: 1

Encoding:| O 1 0 1 1 r r r

Operation: ANL
(A) « (A) N (Rp)

14 L ___|]

0509C-8051-07/06

ANL

ANL

ANL

ANL

ANL

A direct
Bytes: 2
Cycles: 1

Encoding:| O 1 0 1

direct address

Operation: ANL
(A) « (A) A\ (direct)

A @R,
Bytes: 1
Cycles: 1

Encoding:| O 1 0 1

Operation: ANL
(A) « (A) N ((R))

A #data
Bytes: 2
Cycles: 1

Encoding:| O 1 0 1

immediate data

Operation: ANL
(A) « (A) A\ #data

direct,A
Bytes: 2
Cycles: 1

Encoding:| O 1 0 1

direct address

Operation: ANL
(direct) « (direct) A (A)

direct,#data
Bytes: 3
Cycles: 2

Encoding:| O 1 0 1

direct address

immediate data

Operation: ANL
(direct) « (direct) A #data

0509C-8051-07/06

AIMEL

I)

15

ATMEL

ANL C,<src-bit>

Function: Logical-AND for bit variables

Description: If the Boolean value of the source bit is a logical 0, then ANL C clears the carry flag; otherwise, this instruction
leaves the carry flag in its current state. A slash (/) preceding the operand in the assembly language indicates
that the logical complement of the addressed bit is used as the source value, but the source bit itself is not
affected. No other flags are affected.

Only direct addressing is allowed for the source operand.

Example: Set the carry flag if, and only if, P1.0 = 1, ACC.7 =1, and OV = 0:

MOV C,P1.0 ;LOAD CARRY WITH INPUT PIN STATE
ANL C,ACC.7 ;AND CARRY WITH ACCUM. BIT 7
ANL C,/ovV ;AND WITH INVERSE OF OVERFLOW FLAG
ANL C,bit
Bytes: 2
Cycles: 2
Encoding:| 1 0 0 0 0 0 1 0 ‘ ‘ bit address

Operation: ANL
(C) « (C) A (bit)

ANL C,/bit
Bytes: 2
Cycles: 2
Encoding:| 1 0 1 1
Operation: ANL
C) = (C)A 1 (bit)
16 |

0509C-8051-07/06

CINE <dest-byte>,<src-byte>, rel

Function: Compare and Jump if Not Equal.

Description: CJNE compares the magnitudes of the first two operands and branches if their values are not equal. The branch
destination is computed by adding the signed relative-displacement in the last instruction byte to the PC, after
incrementing the PC to the start of the next instruction. The carry flag is set if the unsigned integer value of
<dest-byte> is less than the unsigned integer value of <src-byte>; otherwise, the carry is cleared. Neither
operand is affected.

The first two operands allow four addressing mode combinations: the Accumulator may be compared with any
directly addressed byte or immediate data, and any indirect RAM location or working register can be compared
with an immediate constant.

Example: The Accumulator contains 34H. Register 7 contains 56H. The first instruction in the sequence,

CINE R7, # 60H, NOT_EQ
; e ;R7 = 60H.
NOT_EQ: JC REQ_LOW ‘IF R7 < 60H.
; el ;R7 > 60H.

sets the carry flag and branches to the instruction at label NOT_EQ. By testing the carry flag, this instruction
determines whether R7 is greater or less than 60H.

If the data being presented to Port 1 is also 34H, then the following instruction,
WAIT: CJINE A, P1L,WAIT

clears the carry flag and continues with the next instruction in sequence, since the Accumulator does equal the
data read from P1. (If some other value was being input on P1, the program loops at this point until the P1 data
changes to 34H.)

CJIJNE A.direct,rel

Bytes: 3
Cycles: 2
Encoding:| 1 0 1 1 0 1 0 1 ‘ ‘ direct address ‘ ‘ rel. address

Operation: (PC)« (PC) +3
IF (A) < > (direct)
THEN
(PC) « (PC) + relative offset
IF (A) < (direct)
THEN
C)«1
ELSE
(C)«0

AIMEL 17

0509C-8051-07/06 I ®

AIMEL

CJINE A #data,rel
Bytes: 3
Cycles: 2

Encoding:| 1 0 1 1 0 1 0 0 ‘ ‘ immediate data ‘ ‘ rel. address

Operation: (PC)« (PC)+ 3
IF (A) < > data
THEN
(PC) « (PC) + relative offset
IF (A) < data
THEN
C)«1
ELSE
(C)«0

CJIJNE R, #data,rel
Bytes: 3
Cycles: 2

Encoding:| 1 0 1 1 1 r r r ‘ ‘ immediate data ‘ ‘ rel. address

Operation: (PC)« (PC)+ 3
IF (R,) < > data
THEN
(PC) « (PC) + relative offset
IF (R,) < data
THEN
C)«1
ELSE
(C)«0

CINE @R;,data,rel
Bytes: 3
Cycles: 2

Encoding:| 1 0 1 1 0 1 1 i ‘ ‘ immediate data ‘ ‘ rel. address

Operation: (PC)« (PC)+ 3
IF ((R)) <> data
THEN
(PC) « (PC) + relative offset
IF ((R)) < data
THEN
C)«1
ELSE
(C)«0

18 L ___|]

0509C-8051-07/06

CLR A
Function: Clear Accumulator
Description: CLR A clears the Accumulator (all bits set to 0). No flags are affected
Example: The Accumulator contains 5CH (01011100B). The following instruction,CLR Aleaves the Accumulator set to 00H
(00000000B).
Bytes: 1
Cycles: 1
Encoding:| 1 1 1 0 0 1 0 0
Operation: CLR
(A)<0
CLR bit
Function: Clear bit
Description: CLR bit clears the indicated bit (reset to 0). No other flags are affected. CLR can operate on the carry flag or any
directly addressable bit.
Example: Port1 has previously been written with 5DH (01011101B). The following instruction,CLR P1.2 leaves the port set
to 59H (01011001B).
CLR C
Bytes: 1
Cycles: 1
Encoding:| 1 1 0 0 0 0 1 1
Operation: CLR
(C)«0
CLR it
Bytes: 2
Cycles: 1
Encoding:| 1 1 0 0 0 0 1 0 ‘ ‘ bit address
Operation: CLR
(bit) < 0

0509C-8051-07/06

AIMEL 19

I)

ATMEL

CPL A
Function: Complement Accumulator
Description: CPLA logically complements each bit of the Accumulator (one’s complement). Bits which previously contained a
1 are changed to a 0 and vice-versa. No flags are affected.
Example: The Accumulator contains 5CH (01011100B). The following instruction,
CPL A
leaves the Accumulator set to 0A3H (10100011B).
Bytes: 1
Cycles: 1
Encoding:| 1 1 1 1 0 1 0 0
Operation: CPL
A« TM»)
CPL bit
Function: Complement bit
Description: CPL bit complements the bit variable specified. A bit that had been a 1 is changed to 0 and vice-versa. No other
flags are affected. CLR can operate on the carry or any directly addressable bit.
Note: When this instruction is used to modify an output pin, the value used as the original data is read from the
output data latch, not the input pin.
Example: Port 1 has previously been written with 5BH (01011101B). The following instruction sequence,CPL P1.1CPL
P1.2 leaves the port set to 5BH (01011011B).
CPL C
Bytes: 1
Cycles: 1
Encoding:| 1 0 1 1 0 0 1 1
Operation: CPL
©)«1(©)
CPL Dbit
Bytes: 2
Cycles: 1
Encoding:| 1 0 1 1 0 0 1 0 ‘ ‘ bit address
Operation: CPL
(bit) «] (bit)
20 |

0509C-8051-07/06

DA A

Function: Decimal-adjust Accumulator for Addition

Description: DA A adjusts the eight-bit value in the Accumulator resulting from the earlier addition of two variables (each in
packed-BCD format), producing two four-bit digits. Any ADD or ADDC instruction may have been used to
perform the addition.

If Accumulator bits 3 through 0 are greater than nine (xxxx1010-xxxx1111), or if the AC flag is one, six is added to
the Accumulator producing the proper BCD digit in the low-order nibble. This internal addition sets the carry flag
if a carry-out of the low-order four-bit field propagates through all high-order bits, but it does not clear the carry
flag otherwise.

If the carry flag is now set, or if the four high-order bits now exceed nine (1010xxxx-1111xxxx), these high-order
bits are incremented by six, producing the proper BCD digit in the high-order nibble. Again, this sets the carry
flag if there is a carry-out of the high-order bits, but does not clear the carry. The carry flag thus indicates if the
sum of the original two BCD variables is greater than 100, allowing multiple precision decimal addition. OV is not
affected.

All of this occurs during the one instruction cycle. Essentially, this instruction performs the decimal conversion by
adding O0H, 06H, 60H, or 66H to the Accumulator, depending on initial Accumulator and PSW conditions.

Note: DA A cannot simply convert a hexadecimal number in the Accumulator to BCD notation, nor does DAA
apply to decimal subtraction.

Example: The Accumulator holds the value 56H (01010110B), representing the packed BCD digits of the decimal number
56. Register 3 contains the value 67H (01100111B), representing the packed BCD digits of the decimal nhumber
67. The carry flag is set. The following instruction sequence

ADDC A,R3
DA A

first performs a standard two’s-complement binary addition, resulting in the value OBEH (10111110) in the
Accumulator. The carry and auxiliary carry flags are cleared.

The Decimal Adjust instruction then alters the Accumulator to the value 24H (00100100B), indicating the packed
BCD digits of the decimal number 24, the low-order two digits of the decimal sum of 56, 67, and the carry-in. The
carry flag is set by the Decimal Adjust instruction, indicating that a decimal overflow occurred. The true sum of
56, 67, and 1 is 124.

BCD variables can be incremented or decremented by adding 01H or 99H. If the Accumulator initially holds 30H
(representing the digits of 30 decimal), then the following instruction sequence,

ADD A, # 99H
DA A

leaves the carry set and 29H in the Accumulator, since 30 + 99 = 129. The low-order byte of the sum can be
interpreted to mean 30 - 1 = 29.

Bytes: 1
Cycles: 1
Encoding:| 1 1 0 1 0 1 0 0

Operation: DA
-contents of Accumulator are BCD

IF [[(A3-0) > 9] V [(AC) = 1]]
THEN (A3_0) — (A3_0) +6
AND
IF [[(A7.4) > 91 V [(C) = 1]]

THEN (A7.4) < (A7.4) + 6

AIMEL 21

0509C-8051-07/06 I ®

ATMEL

DEC byte

Function: Decrement

Description: DEC byte decrements the variable indicated by 1. An original value of 00H underflows to OFFH. No flags are
affected. Four operand addressing modes are allowed: accumulator, register, direct, or register-indirect.

Note: When this instruction is used to modify an output port, the value used as the original port data will be read
from the output data latch, not the input pins.

Example: Register 0 contains 7FH (01111111B). Internal RAM locations 7EH and 7FH contain 00H and 40H, respectively.
The following instruction sequence,

DEC @RO
DEC RO
DEC @RO

leaves register 0 set to 7EH and internal RAM locations 7EH and 7FH set to OFFH and 3FH.
DEC A
Bytes: 1
Cycles: 1
Encoding:| O 0 0 1 0 1 0 0

Operation: DEC
A< A)-1

DEC R,
Bytes: 1
Cycles: 1
Encoding:| O 0 0 1 1 r r r

Operation: DEC
(Rp) < (Rp) -1

DEC direct
Bytes: 2
Cycles: 1
Encoding:| O 0 0 1 0 1 0 1 ‘ ‘ direct address

Operation: DEC
(direct) « (direct) - 1

DEC Q@R;
Bytes: 1
Cycles: 1
Encoding:| O 0 0 1 0 1 1 i

Operation: DEC
(R) < ((R)) -1

22 L ___|]
0509C-8051-07/06

DIV AB
Function: Divide
Description: DIV AB divides the unsigned eight-bit integer in the Accumulator by the unsigned eight-bit integer in register B.
The Accumulator receives the integer part of the quotient; register B receives the integer remainder. The carry
and OV flags are cleared.
Exception: if B had originally contained 00H, the values returned in the Accumulator and B-register are
undefined and the overflow flag are set. The carry flag is cleared in any case.
Example: The Accumulator contains 251 (OFBH or 11111011B) and B contains 18 (12H or 00010010B). The following
instruction,
DIV AB
leaves 13 in the Accumulator (ODH or 00001101B) and the value 17 (11H or 00010001B) in B, since
251 = (13 x 18) + 17. Carry and OV are both cleared.
Bytes: 1
Cycles: 4
Encoding:| 1 0 0 0 0 1 0 0
Operation: DIV
(A)15.8 < (A)(B)
(B)7.0

0509C-8051-07/06

AIMEL 23

I)

ATMEL

DIJNZ <byte>,<rel-addr>

Function: Decrement and Jump if Not Zero

Description: DJNZ decrements the location indicated by 1, and branches to the address indicated by the second operand if
the resulting value is not zero. An original value of OOH underflows to OFFH. No flags are affected. The branch
destination is computed by adding the signed relative-displacement value in the last instruction byte to the PC,
after incrementing the PC to the first byte of the following instruction.

The location decremented may be a register or directly addressed byte.

Note: When this instruction is used to modify an output port, the value used as the original port data will be read
from the output data latch, not the input pins.

Example: Internal RAM locations 40H, 50H, and 60H contain the values 01H, 70H, and 15H, respectively. The following
instruction sequence,

DJINZ 40H,LABEL_1
DJINZ 50H,LABEL_2
DJINZ 60H,LABEL_3

causes a jump to the instruction at label LABEL_2 with the values 00H, 6FH, and 15H in the three RAM
locations. The first jump was not taken because the result was zero.

This instruction provides a simple way to execute a program loop a given number of times or for adding a
moderate time delay (from 2 to 512 machine cycles) with a single instruction. The following instruction sequence,

MOV R2,#8
TOGGLE: CPL P1.7
DINZ R2,TOGGLE

toggles P1.7 eight times, causing four output pulses to appear at bit 7 of output Port 1. Each pulse lasts three
machine cycles; two for DJNZ and one to alter the pin.

DINZ Ry rel
Bytes: 2
Cycles: 2
Encoding:| 1 1 0 1 1 r r r ‘ ‘ rel. address

Operation: DJNZ
(PC) « (PC) + 2
(Rn) < (Rp) -1
IF(Ry) >0or (R, <0
THEN
(PC) « (PC) + rel

DJNZ direct,rel

Bytes: 3
Cycles: 2
Encoding:| 1 1 0 1 0 1 0 1 ‘ ‘ direct address ‘ ‘ rel. address

Operation: DJNZ
(PC)« (PC)+2
(direct) « (direct) - 1
IF (direct) > 0 or (direct) <0
THEN
(PC) « (PC) + rel

24 L ___|]
0509C-8051-07/06

INC <byte>
Function: Increment
Description: INC increments the indicated variable by 1. An original value of OFFH overflows to 00H. No flags are affected.
Three addressing modes are allowed: register, direct, or register-indirect.
Note: When this instruction is used to modify an output port, the value used as the original port data will be read
from the output data latch, not the input pins.
Example: Register O contains 7EH (011111110B). Internal RAM locations 7EH and 7FH contain OFFH and 40H,
respectively. The following instruction sequence,
INC @RO
INC RO
INC @RO
leaves register 0 set to 7FH and internal RAM locations 7EH and 7FH holding 00H and 41H, respectively.
INC A
Bytes: 1
Cycles: 1
Encoding:| O 0 0 0 0 1 0 0
Operation: INC
A< A+1
INC Ry,
Bytes: 1
Cycles: 1
Encoding:| O 0 0 0 1 r r r
Operation: INC
(Rn) < (Rp) +1
INC direct
Bytes: 2
Cycles: 1
Encoding:| O 0 0 0 0 1 0 1 ‘ ‘ direct address
Operation: INC
(direct) « (direct) + 1
INC @R;
Bytes: 1
Cycles: 1
Encoding:| O 0 0 0 0 1 1 i
Operation: INC
(R)) « (R)) +1

0509C-8051-07/06

AIMEL 25

I)

ATMEL

INC DPTR
Function: Increment Data Pointer
Description: INC DPTR increments the 16-bit data pointer by 1. A 16-bit increment (modulo 21) is performed, and an
overflow of the low-order byte of the data pointer (DPL) from OFFH to 00H increments the high-order byte (DPH).
No flags are affected.
This is the only 16-bit register which can be incremented.
Example: Registers DPH and DPL contain 12H and OFEH, respectively. The following instruction sequence,
INC DPTR
INC DPTR
INC DPTR
changes DPH and DPL to 13H and 01H.
Bytes: 1
Cycles: 2
Encoding:| 1 0 1 0 0 0 1 1
Operation: INC
(DPTR) « (DPTR) +1
JB blt,rel
Function: Jump if Bit set
Description: If the indicated bit is a one, JB jump to the address indicated; otherwise, it proceeds with the next instruction.
The branch destination is computed by adding the signed relative-displacement in the third instruction byte to the
PC, after incrementing the PC to the first byte of the next instruction. The bit tested is not modified. No flags are
affected.
Example: The data present at input port 1 is 11001010B. The Accumulator holds 56 (01010110B). The following instruction
sequence,
JB P1.2,LABEL1
JB ACC. 2,LABEL2
causes program execution to branch to the instruction at label LABEL2.
Bytes: 3
Cycles: 2
Encoding:| O 0 1 0 0 0 0 0 ‘ ‘ bit address ‘ ‘ rel. address
Operation: JB
(PC)« (PC)+3
IF (bit)=1
THEN
(PC) « (PC) + rel
26 |

0509C-8051-07/06

JBC bit,rel
Function: Jump if Bitis set and Clear bit
Description: If the indicated bit is one, JBC branches to the address indicated; otherwise, it proceeds with the next instruction.
The bit will not be cleared if it is already a zero. The branch destination is computed by adding the signed
relative-displacement in the third instruction byte to the PC, after incrementing the PC to the first byte of the next
instruction. No flags are affected.
Note: When this instruction is used to test an output pin, the value used as the original data will be read from the
output data latch, not the input pin.
Example: The Accumulator holds 56H (01010110B). The following instruction sequence,
JBC ACC.3,LABEL1
JBC ACC.2,LABEL2
causes program execution to continue at the instruction identified by the label LABEL2, with the Accumulator
modified to 52H (01010010B).
Bytes: 3
Cycles: 2
Encoding:| O 0 0 1 0 0 0 0 ‘ ‘ bit address ‘ ‘ rel. address
Operation: JBC
(PC)« (PC)+3
IF (bit)=1
THEN
(bit) « 0
(PC) « (PC) +rel
JC rel
Function: Jump if Carry is set
Description: |If the carry flag is set, JC branches to the address indicated; otherwise, it proceeds with the next instruction. The
branch destination is computed by adding the signed relative-displacement in the second instruction byte to the
PC, after incrementing the PC twice. No flags are affected.
Example: The carry flag is cleared. The following instruction sequence,
JC LABEL1
CPL C
JC LABEL 2
sets the carry and causes program execution to continue at the instruction identified by the label LABEL2.
Bytes: 2
Cycles: 2
Encoding:| O 1 0 0 0 0 0 0 ‘ ‘ rel. address
Operation: JC
(PC)« (PC)+2
IF (C)=1

0509C-8051-07/06

THEN
(PC) « (PC) + rel

27

ATMEL

JMP @A+DPTR

Function: Jump indirect

Description: JMP @A+DPTR adds the eight-bit unsigned contents of the Accumulator with the 16-bit data pointer and loads
the resulting sum to the program counter. This is the address for subsequent instruction fetches. Sixteen-bit
addition is performed (modulo 216): a carry-out from the low-order eight bits propagates through the higher-order
bits. Neither the Accumulator nor the Data Pointer is altered. No flags are affected.

Example: An even number from 0 to 6 is in the Accumulator. The following sequence of instructions branches to one of
four AJMP instructions in a jump table starting at JMP_TBL.

MOV DPTR, # JMP_TBL

JMP @A + DPTR
JMP_TBL: AJMP LABELO

AIMP LABEL1

AIMP LABEL2

AIMP LABEL3

If the Accumulator equals 04H when starting this sequence, execution jumps to label LABEL2. Because AJMP is
a 2-byte instruction, the jump instructions start at every other address.

Bytes: 1
Cycles: 2
Encoding:| O 1 1 1 0 0 1 1

Operation: JMP
(PC) « (A) + (DPTR)

28 L ___|]
0509C-8051-07/06

JNB bit,rel
Function: Jump if Bit Not set
Description: If the indicated bit is a 0, INB branches to the indicated address; otherwise, it proceeds with the next instruction.
The branch destination is computed by adding the signed relative-displacement in the third instruction byte to the
PC, after incrementing the PC to the first byte of the next instruction. The bit tested is not modified. No flags are
affected.
Example: The data present at input port 1 is 11001010B. The Accumulator holds 56H (01010110B). The following
instruction sequence,
JNB P1.3,LABEL1
JNB ACC.3,LABEL2
causes program execution to continue at the instruction at label LABEL2.
Bytes: 3
Cycles: 2
Encoding:| O 0 1 1 0 0 0 0 ‘ ‘ bit address rel. address
Operation: JNB
(PC)« (PC)+3
IF (bit)=0
THEN (PC) « (PC) + rel
JNC rel
Function: Jump if Carry not set
Description: If the carry flag is a 0, INC branches to the address indicated; otherwise, it proceeds with the next instruction.
The branch destination is computed by adding the signal relative-displacement in the second instruction byte to
the PC, after incrementing the PC twice to point to the next instruction. The carry flag is not modified.
Example: The carry flag is set. The following instruction sequence,
JNC LABEL1
CPL C
JNC LABEL2
clears the carry and causes program execution to continue at the instruction identified by the label LABEL2.
Bytes: 2
Cycles: 2
Encoding:| O 1 0 1 0 0 0 0 ‘ ‘ rel. address
Operation: JNC
(PC)« (PC)+ 2
IF (C)=0

0509C-8051-07/06

THEN (PC) « (PC) + rel

29

AIMEL

I)

ATMEL

JNZ rel
Function: Jump if Accumulator Not Zero
Description: If any bit of the Accumulator is a one, JNZ branches to the indicated address; otherwise, it proceeds with the
next instruction. The branch destination is computed by adding the signed relative-displacement in the second
instruction byte to the PC, after incrementing the PC twice. The Accumulator is not modified. No flags are
affected.
Example: The Accumulator originally holds OOH. The following instruction sequence,
JINZ LABEL1
INC A
JINZ LABEL2
sets the Accumulator to 01H and continues at label LABEL2.
Bytes: 2
Cycles: 2
Encoding:| O 1 1 1 0 0 0 0 ‘ ‘ rel. address
Operation: JNZ
(PC)« (PC)+2
IF (A)#0
THEN (PC) « (PC) + rel
JZ rel
Function: Jump if Accumulator Zero
Description: |If all bits of the Accumulator are 0, JZ branches to the address indicated; otherwise, it proceeds with the next
instruction. The branch destination is computed by adding the signed relative-displacement in the second
instruction byte to the PC, after incrementing the PC twice. The Accumulator is not modified. No flags are
affected.
Example: The Accumulator originally contains 01H. The following instruction sequence,
JZ LABEL1
DEC A
JZ LABEL2
changes the Accumulator to 00H and causes program execution to continue at the instruction identified by the
label LABEL2.
Bytes: 2
Cycles: 2
Encoding:| O 1 1 0 0 0 0 0 ‘ ‘ rel. address
Operation: JZ
(PC)« (PC)+ 2
IF (A)=0
THEN (PC) « (PC) + rel
30 |

0509C-8051-07/06

LCALL addri6

Function:

Description:

Example:

Bytes:
Cycles:
Encoding:

Operation:

LIMP addr16

Long call

LCALL calls a subroutine located at the indicated address. The instruction adds three to the program counter to
generate the address of the next instruction and then pushes the 16-bit result onto the stack (low byte first),
incrementing the Stack Pointer by two. The high-order and low-order bytes of the PC are then loaded,
respectively, with the second and third bytes of the LCALL instruction. Program execution continues with the
instruction at this address. The subroutine may therefore begin anywhere in the full 64K byte program memory
address space. No flags are affected.

Initially the Stack Pointer equals 07H. The label SUBRTN is assigned to program memory location 1234H. After
executing the instruction,

LCALL SUBRTN

at location 0123H, the Stack Pointer will contain 09H, internal RAM locations 08H and 09H will contain 26H and
01H, and the PC will contain 1234H.

3
2

0 0 0 1 0 0 1 0 ‘ ‘ addrl5-addr8 ‘ ‘ addr7-addrO

LCALL

(PC)« (PC)+3
(SP)« (SP) +1
((SP)) « (PC7.q)
(SP)« (SP) + 1
((SP)) < (PCy5.9)
(PC) — addr15_0

Function:

Description:

Example:

Bytes:
Cycles:
Encoding:

Operation:

0509C-8051-07/06

Long Jump

LIJMP causes an unconditional branch to the indicated address, by loading the high-order and low-order bytes of
the PC (respectively) with the second and third instruction bytes. The destination may therefore be anywhere in
the full 64K program memory address space. No flags are affected.

The label IMPADR is assigned to the instruction at program memory location 1234H. The instruction,
LIMP JMPADR

at location 0123H will load the program counter with 1234H.

3

2

0 0 0 0 0 0 1 0 ‘ ‘ addrl5-addr8 addr7-addrO

LIMP
(PC) — addr15_0

31

AIMEL

I)

ATMEL

MOV <dest-byte>,<src-byte>
Function: Move byte variable
Description: The byte variable indicated by the second operand is copied into the location specified by the first operand. The
source byte is not affected. No other register or flag is affected.
This is by far the most flexible operation. Fifteen combinations of source and destination addressing modes are
allowed.
Example: Internal RAM location 30H holds 40H. The value of RAM location 40H is 10H. The data present at input port 1 is
11001010B (OCAH).
MOV RO,#30H ;RO < =30H
MOV A,@RO ;A <=40H
MOV R1,A ;R1 < =40H
MOV B,@R1 ;B <=10H
MOV @R1,P1 ;RAM (40H) < = 0CAH
MOV P2,P1 ;P2 #0CAH
leaves the value 30H in register 0, 40H in both the Accumulator and register 1, 10H in register B, and 0CAH
(11001010B) both in RAM location 40H and output on port 2.
MOV AR,
Bytes: 1
Cycles: 1
Encoding:| 1 1 1 0 1 r r r
Operation: MOV
(A) < (Rp)
*MOV A.direct
Bytes: 2
Cycles: 1
Encoding:| 1 1 1 0 0 1 0 1 ‘ ‘ direct address
Operation: MOV

(A) « (direct)

* MOV A,ACC is not a valid Instruction.

MOV A,@R,

Bytes:
Cycles:

1
1

1 1 1 0 0 1 1 i

Encoding:

Operation: MOV
(A) < ((R)

L ___|]
0509C-8051-07/06

32

MOV

MOV

MOV

MOV

MOV

MOV

A #data

Bytes:
Cycles:
Encoding:

Operation:

Rp.A

Bytes:
Cycles:
Encoding:

Operation:

R,.direct

Bytes:
Cycles:
Encoding:

Operation:

R #data

Bytes:
Cycles:
Encoding:

Operation:

direct,A

Bytes:
Cycles:
Encoding:

Operation:

direct,R,

Bytes:
Cycles:
Encoding:

Operation:

0509C-8051-07/06

immediate data

direct addr.

2
1
0 1 1
MOV
(A) « #data
1
1
1 1 1
MOV
(Rn) < (A)
2
2
1 0 1
MOV

(Rp) « (direct)

immediate data

MOV
(R) « #data

direct address

MOV
(direct) « (A)

direct address

MOV
(direct) « (Ry)

AIMEL

I)

33

MOV

MOV

MOV

direct,direct
Bytes: 3
Cycles: 2

ATMEL

Encoding:| 1 0 0

dir. addr. (dest)

dir. addr. (scr)

Operation: MOV
(direct) « (direct)

direct, @R;
Bytes: 2
Cycles: 2

Encoding:| 1 0 0

direct addr.

Operation: MOV
(direct) « ((Ry))

direct,#data
Bytes: 3

Cycles:

2

Encoding:

0 1 1

direct address

immediate data

Operation:

MOV

(direct) « #data
MOV @R;,A
Bytes: 1
Cycles: 1
Encoding:| 1 1 1 1 0 1 1 i
Operation: MOV

(R)) < (A)
MOV @R;direct
Bytes: 2
Cycles: 2
Encoding:| 1 0 1 0 0 1 1 i ‘ ‘ direct addr.

Operation: MOV
((Ry)) « (direct)

MOV @R;#data
Bytes: 2
Cycles: 1

Encoding:| O 1 1 1 0 1 1 i ‘ ‘ immediate data

Operation: MOV
((Ry)) « #data

34 L ___|]
0509C-8051-07/06

MOV <dest-bit>,<src-bit>
Function: Move bit data
Description: MOV <dest-bit>,<src-bit> copies the Boolean variable indicated by the second operand into the location
specified by the first operand. One of the operands must be the carry flag; the other may be any directly
addressable bit. No other register or flag is affected.
Example: The carry flag is originally set. The data present at input Port 3 is 11000101B. The data previously written to
output Port 1 is 35H (00110101B).
MOV P1.3,C
MOV C,P3.3
MOV P1.2,C
leaves the carry cleared and changes Port 1 to 39H (00111001B).
MOV C,bit
Bytes: 2
Cycles: 1
Encoding:| 1 0 1 0 0 0 1 0 ‘ ‘ bit address
Operation: MOV
(C) « (bit)
MOV bit,C
Bytes: 2
Cycles: 2
Encoding:| 1 0 0 1 0 0 1 0 ‘ ‘ bit address
Operation: MOV
(bit) « (C)

MOV DPTR,#datal6

Function:

Description:

Example:

Bytes:
Cycles:
Encoding:

Operation:

0509C-8051-07/06

Load Data Pointer with a 16-bit constant

MOV DPTR,#datal6 loads the Data Pointer with the 16-bit constant indicated. The 16-bit constant is loaded into
the second and third bytes of the instruction. The second byte (DPH) is the high-order byte, while the third byte
(DPL) holds the lower-order byte. No flags are affected.

This is the only instruction which moves 16 bits of data at once.

The instruction,

MOV DPTR, # 1234H

loads the value 1234H into the Data Pointer: DPH holds 12H, and DPL holds 34H.
3

2

1 0 0 1 0 0 0 0 ‘ ‘ immed. datal5-8 ‘ ‘ immed. data7-0

MOV
(DPTR) — #data15_0
DPH « DPL « #data15_8 — #data7_0

35

AIMEL

I)

ATMEL

MOVC A, @A+ <base-reg>

Function: Move Code byte

Description: The MOVC instructions load the Accumulator with a code byte or constant from program memory. The address
of the byte fetched is the sum of the original unsigned 8-bit Accumulator contents and the contents of a 16-bit
base register, which may be either the Data Pointer or the PC. In the latter case, the PC is incremented to the
address of the following instruction before being added with the Accumulator; otherwise the base register is not
altered. Sixteen-bit addition is performed so a carry-out from the low-order eight bits may propagate through
higher-order bits. No flags are affected.

Example: A value between 0 and 3 is in the Accumulator. The following instructions will translate the value in the
Accumulator to one of four values defined by the DB (define byte) directive.

REL_PC: INC A
MOVC A @A+PC

RET

DB 66H
DB 77H
DB 88H
DB 99H

If the subroutine is called with the Accumulator equal to 01H, it returns with 77H in the Accumulator. The INC A
before the MOVC instruction is needed to “get around” the RET instruction above the table. If several bytes of
code separate the MOVC from the table, the corresponding number is added to the Accumulator instead.

MOVC A,@A+DPTR
Bytes: 1
Cycles: 2

Encoding:| 1 0 0 1 0 0 1 1

Operation: MOVC
(A) < ((A) + (DPTR))

MOVC A,@A+PC
Bytes: 1
Cycles: 2
Encoding:| 1 0 0 0 0 0 1 1

Operation: MOVC
(PC)« (PC)+1
(A) < ((A) +(PC))

36 L ___|]

0509C-8051-07/06

MOVX <dest-byte>,<src-byte>

Function: Move External

Description: The MOVX instructions transfer data between the Accumulator and a byte of external data memory, which is why
“X" is appended to MOV. There are two types of instructions, differing in whether they provide an 8-bit or 16-bit
indirect address to the external data RAM.

In the first type, the contents of RO or R1 in the current register bank provide an 8-bit address multiplexed with
data on PO. Eight bits are sufficient for external I/O expansion decoding or for a relatively small RAM array. For
somewhat larger arrays, any output port pins can be used to output higher-order address bits. These pins are

controlled by an output instruction preceding the MOVX.

In the second type of MOVX instruction, the Data Pointer generates a 16-bit address. P2 outputs the high-order
eight address bits (the contents of DPH), while PO multiplexes the low-order eight bits (DPL) with data. The P2
Special Function Register retains its previous contents, while the P2 output buffers emit the contents of DPH.
This form of MOVX is faster and more efficient when accessing very large data arrays (up to 64K bytes), since
no additional instructions are needed to set up the output ports.

It is possible to use both MOVX types in some situations. A large RAM array with its high-order address lines
driven by P2 can be addressed via the Data Pointer, or with code to output high-order address bits to P2,
followed by a MOVX instruction using RO or R1.

Example: An external 256 byte RAM using multiplexed address/data lines is connected to the 8051 Port 0. Port 3 provides
control lines for the external RAM. Ports 1 and 2 are used for normal I/O. Registers 0 and 1 contain 12H and
34H. Location 34H of the external RAM holds the value 56H. The instruction sequence,

MOVX A,@R1
MOVX @RO,A

copies the value 56H into both the Accumulator and external RAM location 12H.

MOVX A,@R;
Bytes: 1
Cycles: 2

Encoding:| 1 1 1 0 0 0 1 i
Operation: MOVX

(A) < ((R)
MOVX A,@DPTR
Bytes: 1
Cycles: 2

Encoding:| 1 1 1 0 0 0 0 0

Operation: MOVX
(A) < ((DPTR))

AIMEL 3

0509C-8051-07/06 I ®

ATMEL

MOVX @R;,A
Bytes: 1
Cycles: 2

Encoding:| 1 1 1 1 0 0 1 i

Operation: MOVX
(R) « (A)

MOVX @DPTR,A
Bytes: 1
Cycles: 2

Encoding:| 1 1 1 1 0 0 0 0

Operation: MOVX
(DPTR) « (A)

MUL AB

Function: Multiply

Description: MUL AB multiplies the unsigned 8-bit integers in the Accumulator and register B. The low-order byte of the 16-bit
product is left in the Accumulator, and the high-order byte in B. If the product is greater than 255 (OFFH), the
overflow flag is set; otherwise it is cleared. The carry flag is always cleared.

Example: Originally the Accumulator holds the value 80 (50H). Register B holds the value 160 (OAOH). The instruction,
MUL AB

will give the product 12,800 (3200H), so B is changed to 32H (00110010B) and the Accumulator is cleared. The
overflow flag is set, carry is cleared.

Bytes: 1
Cycles: 4

Encoding:| 1 0 1 0 0 1 0 0

Operation: MUL
(A)7.0 < (A) X (B)
(B)1s-8

38 L ___|]
0509C-8051-07/06

NOP
Function: No Operation
Description: Execution continues at the following instruction. Other than the PC, no registers or flags are affected.
Example: A low-going output pulse on bit 7 of Port 2 must last exactly 5 cycles. A simple SETB/CLR sequence generates
a one-cycle pulse, so four additional cycles must be inserted. This may be done (assuming no interrupts are
enabled) with the following instruction sequence,
CLR P2.7
NOP
NOP
NOP
NOP
SETB P2.7
Bytes: 1
Cycles: 1
Encoding:| O 0 0 0 0 0 0 0
Operation: NOP

(PC)«(PC)+1

ORL <dest-byte> <src-byte>

Function:

Description:

Example:

ORL AR,

Bytes:
Cycles:
Encoding:

Operation:

0509C-8051-07/06

Logical-OR for byte variables

ORL performs the bitwise logical-OR operation between the indicated variables, storing the results in the
destination byte. No flags are affected.

The two operands allow six addressing mode combinations. When the destination is the Accumulator, the source
can use register, direct, register-indirect, or immediate addressing; when the destination is a direct address, the
source can be the Accumulator or immediate data.

Note: When this instruction is used to modify an output port, the value used as the original port data is read from
the output data latch, not the input pins.

If the Accumulator holds 0C3H (11000011B) and RO holds 55H (01010101B) then the following instruction,
ORL ARO

leaves the Accumulator holding the value 0D7H (11010111B).When the destination is a directly addressed byte,
the instruction can set combinations of bits in any RAM location or hardware register. The pattern of bits to be set
is determined by a mask byte, which may be either a constant data value in the instruction or a variable
computed in the Accumulator at run-time. The instruction,

ORL P1,#00110010B
sets bits 5, 4, and 1 of output Port 1.

1
1

0 1 0 0 1 r r r

ORL
(A) <@V Ry

AIMEL 39

I)

ATMEL

ORL A.direct
Bytes: 2
Cycles: 1
Encoding:| O 1 0 0 0 1 0 1 ‘ ‘ direct address

Operation: ORL
(A) « (A) V (direct)

ORL A,@R;
Bytes: 1
Cycles: 1
Encoding:| O 1 0 0 0 1 1 i

Operation: ORL
(A) < (A) V((R))

ORL A #data
Bytes: 2
Cycles: 1
Encoding:| O 1 0 0 0 1 0 0 ‘ ‘ immediate data

Operation: ORL
(A) « (A) V #data

ORL direct,A
Bytes: 2
Cycles: 1
Encoding:| O 1 0 0 0 0 1 0 ‘ ‘ direct address

Operation: ORL
(direct) « (direct) V (A)

ORL direct,#data
Bytes: 3

Cycles: 2
Encoding:| O 1 0 0 0 0 1 1 ‘ ‘ direct addr. ‘ ‘ immediate data

Operation: ORL
(direct) « (direct) V #data

40 L ___|]
0509C-8051-07/06

ORL C,<src-bit>
Function: Logical-OR for bit variables

Description: Set the carry flag if the Boolean value is a logical 1; leave the carry in its current state otherwise. A slash (/)
preceding the operand in the assembly language indicates that the logical complement of the addressed bit is
used as the source value, but the source bit itself is not affected. No other flags are affected.

Example: Setthe carry flag if and only if P1.0 =1, ACC. 7=1,0r OV =0:
MOV C,P1.0 ;LOAD CARRY WITH INPUT PIN P10
ORL C,ACC.7 ;OR CARRY WITH THE ACC. BIT 7
ORL C,/0oV ;OR CARRY WITH THE INVERSE OF OV.
ORL C,bit
Bytes: 2
Cycles: 2
Encoding:| O 1 1 1 0 0 1 0 ‘ ‘ bit address
Operation: ORL
(C) « (C) V (bit)
ORL C,/bit
Bytes: 2
Cycles: 2
Encoding:| 1 0 1 0 0 0 0 0 ‘ ‘ bit address
Operation: ORL _
(C) « (C) V (bit)
POP direct
Function: Pop from stack.

Description: The contents of the internal RAM location addressed by the Stack Pointer is read, and the Stack Pointer is
decremented by one. The value read is then transferred to the directly addressed byte indicated. No flags are
affected.

Example: The Stack Pointer originally contains the value 32H, and internal RAM locations 30H through 32H contain the
values 20H, 23H, and 01H, respectively. The following instruction sequence,
POP DPH
POP DPL
leaves the Stack Pointer equal to the value 30H and sets the Data Pointer to 0123H. At this point, the following
instruction,
POP SP
leaves the Stack Pointer set to 20H. In this special case, the Stack Pointer was decremented to 2FH before
being loaded with the value popped (20H).
Bytes: 2
Cycles: 2
Encoding:| 1 1 0 1 0 0 0 0 ‘ ‘ direct address
Operation: POP

0509C-8051-07/06

(direct) « ((SP))
(SP) « (SP) - 1

41

AIMEL

I)

ATMEL

PUSH direct
Function: Push onto stack
Description: The Stack Pointer is incremented by one. The contents of the indicated variable is then copied into the internal
RAM location addressed by the Stack Pointer. Otherwise no flags are affected.
Example: On entering an interrupt routine, the Stack Pointer contains 09H. The Data Pointer holds the value 0123H. The
following instruction sequence,
PUSH DPL
PUSH DPH
leaves the Stack Pointer set to OBH and stores 23H and 01H in internal RAM locations OAH and 0BH,
respectively.
Bytes: 2
Cycles: 2
Encoding:| 1 1 0 0 0 0 0 0 ‘ ‘ direct address
Operation: PUSH
(SP) « (SP) +1
((SP)) « (direct)
RET
Function: Return from subroutine
Description: RET pops the high- and low-order bytes of the PC successively from the stack, decrementing the Stack Pointer
by two. Program execution continues at the resulting address, generally the instruction immediately following an
ACALL or LCALL. No flags are affected.
Example: The Stack Pointer originally contains the value OBH. Internal RAM locations OAH and OBH contain the values
23H and 01H, respectively. The following instruction,
RET
leaves the Stack Pointer equal to the value 09H. Program execution continues at location 0123H.
Bytes: 1
Cycles: 2
Encoding:| O 0 1 0 0 0 1 0
Operation: RET
(PCy5.8) < ((SP))
(SP)« (SP)-1
(PC7.0) < ((SP))
(SP)« (SP) -1
42 |

0509C-8051-07/06

RETI
Function: Return from interrupt
Description: RETI pops the high- and low-order bytes of the PC successively from the stack and restores the interrupt logic to
accept additional interrupts at the same priority level as the one just processed. The Stack Pointer is left
decremented by two. No other registers are affected; the PSW is not automatically restored to its pre-interrupt
status. Program execution continues at the resulting address, which is generally the instruction immediately after
the point at which the interrupt request was detected. If a lower- or same-level interrupt was pending when the
RETI instruction is executed, that one instruction is executed before the pending interrupt is processed.
Example: The Stack Pointer originally contains the value OBH. An interrupt was detected during the instruction ending at
location 0122H. Internal RAM locations 0AH and OBH contain the values 23H and 01H, respectively. The
following instruction,
RETI
leaves the Stack Pointer equal to 09H and returns program execution to location 0123H.
Bytes: 1
Cycles: 2
Encoding:| O 0 1 1 0 0 1 0
Operation: RETI
(PCy5.8) < ((SP))
(SP)« (SP) -1
(PC7.0) < ((SP))
(SP)« (SP) -1
RL A
Function: Rotate Accumulator Left
Description: The eight bits in the Accumulator are rotated one bit to the left. Bit 7 is rotated into the bit O position. No flags are
affected.
Example: The Accumulator holds the value 0C5H (11000101B). The following instruction,
RL A
leaves the Accumulator holding the value 8BH (10001011B) with the carry unaffected.
Bytes: 1
Cycles: 1
Encoding:| O 0 1 0 0 0 1 1
Operation: RL
(Ay+1l)« (Ap)n=0-6
(Ao) « (A7)

0509C-8051-07/06

43

AIMEL

I)

ATMEL

RLC A
Function: Rotate Accumulator Left through the Carry flag
Description: The eight bits in the Accumulator and the carry flag are together rotated one bit to the left. Bit 7 moves into the
carry flag; the original state of the carry flag moves into the bit O position. No other flags are affected.
Example: The Accumulator holds the value 0C5H(11000101B), and the carry is zero. The following instruction,
RLC A
leaves the Accumulator holding the value 8BH (10001010B) with the carry set.
Bytes: 1
Cycles: 1
Encoding:| O 0 1 1 0 0 1 1
Operation: RLC
(Ay+1)« (Ap)n=0-6
(Ag) < (C)
(C)« (A7)
RR A
Function: Rotate Accumulator Right
Description: The eight bits in the Accumulator are rotated one bit to the right. Bit O is rotated into the bit 7 position. No flags
are affected.
Example: The Accumulator holds the value 0C5H (11000101B). The following instruction,
RR A
leaves the Accumulator holding the value OE2H (11100010B) with the carry unaffected.
Bytes: 1
Cycles: 1
Encoding:| O 0 0 0 0 0 1 1
Operation: RR
(A < (A, +1)n=0-6
(A7) < (Ag)
RRC A
Function: Rotate Accumulator Right through Carry flag
Description: The eight bits in the Accumulator and the carry flag are together rotated one bit to the right. Bit 0 moves into the
carry flag; the original value of the carry flag moves into the bit 7 position. No other flags are affected.
Example: The Accumulator holds the value OC5H (11000101B), the carry is zero. The following instruction,
RRC A
leaves the Accumulator holding the value 62 (01100010B) with the carry set.
Bytes: 1
Cycles: 1
Encoding:| O 0 0 1 0 0 1 1
Operation: RRC
(Ap) < (A+1)n=0-6
(A7) < (C)
(C) « (Ag)
44 |

0509C-8051-07/06

SETB <bit>
Function: Set Bit
Description: SETB sets the indicated bit to one. SETB can operate on the carry flag or any directly addressable bit. No other
flags are affected.
Example: The carry flag is cleared. Output Port 1 has been written with the value 34H (00110100B). The following
instructions,
SETB C
SETB P1.0
sets the carry flag to 1 and changes the data output on Port 1 to 35H (00110101B).
SETB C
Bytes: 1
Cycles: 1
Encoding:| 1 1 0 1 0 0 1 1
Operation: SETB
C)«1
SETB bit
Bytes: 2
Cycles: 1
Encoding:| 1 1 0 1 0 0 1 ‘ 0 ‘ bit address
Operation: SETB
(bit) « 1
SIMP el
Function: Short Jump
Description: Program control branches unconditionally to the address indicated. The branch destination is computed by
adding the signed displacement in the second instruction byte to the PC, after incrementing the PC twice.
Therefore, the range of destinations allowed is from 128 bytes preceding this instruction 127 bytes following it.
Example: The label RELADR is assigned to an instruction at program memory location 0123H. The following instruction,
SIMP RELADR
assembles into location 0100H. After the instruction is executed, the PC contains the value 0123H.
Note: Under the above conditions the instruction following SIMP is at 102H. Therefore, the displacement byte of
the instruction is the relative offset (0123H-0102H) = 21H. Put another way, an SIMP with a displacement of
OFEH is a one-instruction infinite loop.
Bytes: 2
Cycles: 2
Encoding:| 1 0 0 0 0 0 0 0 ‘ ‘ rel. address
Operation: SIJMP

0509C-8051-07/06

(PC)« (PC)+2
(PC) « (PC) + rel

45

AIMEL

I)

SUBB

ATMEL

A,<src-byte>

Function:

Description:

Example:

SUBB AR,

Bytes:
Cycles:
Encoding:

Operation:

SUBB A.direct

Bytes:
Cycles:
Encoding:

Operation:

SUBB A,@R;

Bytes:
Cycles:
Encoding:

Operation:

SUBB A #data

Bytes:
Cycles:
Encoding:

Operation:

46

Subtract with borrow

SUBB subtracts the indicated variable and the carry flag together from the Accumulator, leaving the result in the
Accumulator. SUBB sets the carry (borrow) flag if a borrow is needed for bit 7 and clears C otherwise. (If C was
set before executing a SUBB instruction, this indicates that a borrow was needed for the previous step in a
multiple-precision subtraction, so the carry is subtracted from the Accumulator along with the source operand.)
AC is set if a borrow is needed for bit 3 and cleared otherwise. OV is set if a borrow is needed into bit 6, but not
into bit 7, or into bit 7, but not bit 6.

When subtracting signed integers, OV indicates a negative number produced when a negative value is
subtracted from a positive value, or a positive result when a positive number is subtracted from a negative
number.

The source operand allows four addressing modes: register, direct, register-indirect, or immediate.

The Accumulator holds 0C9H (11001001B), register 2 holds 54H (01010100B), and the carry flag is set. The
instruction,
SUBB AR2

will leave the value 74H (01110100B) in the accumulator, with the carry flag and AC cleared but OV set.

Notice that 0C9H minus 54H is 75H. The difference between this and the above result is due to the carry
(borrow) flag being set before the operation. If the state of the carry is not known before starting a single or
multiple-precision subtraction, it should be explicitly cleared by CLR C instruction.

SUBB
(A) < (A)-(C) - (Rp)

2
1

1 0 0 1 0 1 0 1 ‘ ‘ direct address

SUBB
(A) < (A) - (C) - (direct)

1
1

1 0 0 1 0 1 1 i

SUBB
(A) « (A) - (C) - (R)

2
1

1 0 0 1 0 1 0 0 ‘ ‘ immediate data

SUBB
(A) < (A) - (C) - #data

0509C-8051-07/06

SWAP A
Function: Swap nibbles within the Accumulator
Description: SWAP A interchanges the low- and high-order nibbles (four-bit fields) of the Accumulator (bits 3 through 0 and
bits 7 through 4). The operation can also be thought of as a 4-bit rotate instruction. No flags are affected.
Example: The Accumulator holds the value OC5H (11000101B). The instruction,
SWAP A
leaves the Accumulator holding the value 5CH (01011100B).
Bytes: 1
Cycles: 1
Encoding:| 1 1 0 0 0 1 0 0
Operation: SWAP
(A3.0) D (A7.4)
XCH A <byte>
Function: Exchange Accumulator with byte variable
Description: XCH loads the Accumulator with the contents of the indicated variable, at the same time writing the original
Accumulator contents to the indicated variable. The source/destination operand can use register, direct, or
register-indirect addressing.
Example: RO contains the address 20H. The Accumulator holds the value 3FH (0011111IB). Internal RAM location 20H
holds the value 75H (01110101B). The following instruction,
XCH A,@RO
leaves RAM location 20H holding the values 3FH (00111111B) and 75H (01110101B) in the accumulator.
XCH ARj,
Bytes: 1
Cycles: 1
Encoding:| 1 1 0 0 1 r r r
Operation: XCH
(A) D ((Rp)
XCH A.direct
Bytes: 2
Cycles: 1
Encoding:| 1 1 0 0 0 1 0 1 ‘ ‘ direct address
Operation: XCH
(A) D (direct)
XCH A,@R;
Bytes: 1
Cycles: 1
Encoding:| 1 1 0 0 0 1 1 i
Operation: XCH
(A) D ((Ry)

0509C-8051-07/06

47

ATMEL

XCHD A,@R,

Function: Exchange Digit

Description: XCHD exchanges the low-order nibble of the Accumulator (bits 3 through 0), generally representing a
hexadecimal or BCD digit, with that of the internal RAM location indirectly addressed by the specified register.
The high-order nibbles (bits 7-4) of each register are not affected. No flags are affected.

Example: RO contains the address 20H. The Accumulator holds the value 36H (00110110B). Internal RAM location 20H
holds the value 75H (01110101B). The following instruction,

XCHD A,@RO
leaves RAM location 20H holding the value 76H (01110110B) and 35H (00110101B) in the Accumulator.
Bytes: 1
Cycles: 1
Encoding:| 1 1 0 1 0 1 1 i

Operation: XCHD
(A3.0) D ((Riz-0))

XRL <dest-byte>,<src-byte>

Function: Logical Exclusive-OR for byte variables

Description: XRL performs the bitwise logical Exclusive-OR operation between the indicated variables, storing the results in
the destination. No flags are affected.

The two operands allow six addressing mode combinations. When the destination is the Accumulator, the source
can use register, direct, register-indirect, or immediate addressing; when the destination is a direct address, the
source can be the Accumulator or immediate data.

Note: When this instruction is used to modify an output port, the value used as the original port data is read from
the output data latch, not the input pins.

Example: If the Accumulator holds 0C3H (1100001IB) and register 0 holds 0AAH (10101010B) then the instruction,
XRL A,RO
leaves the Accumulator holding the value 69H (01101001B).

When the destination is a directly addressed byte, this instruction can complement combinations of bits in any
RAM location or hardware register. The pattern of bits to be complemented is then determined by a mask byte,
either a constant contained in the instruction or a variable computed in the Accumulator at run-time. The
following instruction,

XRL P1,#00110001B
complements bits 5, 4, and 0 of output Port 1.
XRL ARy,
Bytes: 1
Cycles: 1

Encoding:| O 1 1 0 1 r r r

Operation: XRL
(A) < (A) ¥ (Rp)

48 L ___|]

0509C-8051-07/06

Document Revision History
Changes from 0509B - 08/05 to 0509C - 07/06

1. Correcto to MOV Direct, page 49.

ATMEL s

0509C-8051-07/06

AIMEL

Y R

Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311

Fax: 1(408) 487-2600

Regional Headquarters

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg.

1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan

Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311

Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311

Fax: 1(408) 436-4314

La Chantrerie

BP 70602

44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18

Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle

13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00

Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300

Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building

East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000

Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300

Fax: 1(719) 540-1759

Biometrics/lmaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’'S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically providedot-
herwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use as compo-
nents in applications intended to support or sustain life.

© Atmel Corporation 2006. All rights reserved. Atmel®, logo and combinations thereof, and Everywhere You Are® are the trademarks or reg-
istered trademarks, of Atmel Corporation or its subsidiaries. Copied by permission of Intel Corporation. Copyright Intel Corporation 1994. Other terms
and product names may be trademarks of others.

@ Printed on recycled paper.

0509C-8051-07/06

	Section 1
	8051 Microcontroller Instruction Set
	Instructions that Affect Flag Settings(1)
	Note: 1. Operations on SFR byte address 208 or bit addresses 209-215 (that is, the PSW or bits in the PSW) also affect flag settings.

	The Instruction Set and Addressing Modes
	Note: 1. All mnemonics copyrighted © Intel Corp., 1980.

	1.1 Instruction Definitions
	ACALL addr11
	ADD A,<src-byte>
	ADDC A, <src-byte>
	AJMP addr11
	ANL <dest-byte>,<src-byte>
	ANL C,<src-bit>
	CJNE <dest-byte>,<src-byte>, rel

	CLR A
	CLR bit
	CPL A
	CPL bit
	DA A
	DEC byte
	DIV AB

	DJNZ <byte>,<rel-addr>
	INC <byte>
	INC DPTR
	JB blt,rel

	JBC bit,rel
	JC rel
	JMP @A+DPTR

	JNB bit,rel
	JNC rel
	JNZ rel
	JZ rel
	LCALL addr16
	LJMP addr16

	MOV <dest-byte>,<src-byte>
	MOV <dest-bit>,<src-bit>
	MOV DPTR,#data16
	MOVC A,@A+ <base-reg>
	MOVX <dest-byte>,<src-byte>
	MUL AB

	NOP
	ORL <dest-byte> <src-byte>
	ORL C,<src-bit>
	POP direct
	PUSH direct
	RET
	RETI
	RL A

	RLC A
	RR A
	RRC A
	SETB <bit>
	SJMP rel
	SUBB A,<src-byte>
	SWAP A
	XCH A,<byte>
	XCHD A,@Ri
	XRL <dest-byte>,<src-byte>

	Document Revision History
	Changes from 0509B - 08/05 to 0509C - 07/06

