Например TDA7294

РадиоКот > Схемы > Цифровые устройства > Измерительная техника

Тестер светодиодов

Автор: serg_svd
Опубликовано 11.05.2017.
Создано при помощи КотоРед.

Предисловие.
Вы спросите: «Зачем нужен такой тестер?»
Периодически у радиолюбителя возникает небольшая проблемка при установке светодиода в ту или иную конструкцию. В основном она заключается в ответах на несколько простых вопросов:
- какой ток нужен для светодиода и как он будет светиться при выбранном токе (особенно в устройствах, где критична потребляемая мощность от источника питания);
- расчет гасящего резистора в цепи светодиода.

Несколько лет назад, увидев на aliexpress простейший тестер для светодиодов ценой в 2-3 USD, я захотел его приобрести.

Но после поиска информации о нем желание купить пропало. По сути это была коробочка с кучей разъемов, с питанием от 9 В батарейки. Питание светодиодов осуществлялось от этой батарейки через гасящие резисторы. Ерунда в общем…
Следующей мыслью было сделать самому простейший стабилизатор тока либо на LM317, либо на стабилизаторе 1117 и питать светодиод заданным током, а падение напряжения на нем измерять при помощи тестера. Но посчитав идею громоздкой и неудобной, я отказался от нее.

И вот недавно я случайно наткнулся на вот эту статью http://robotroom.com/LED-Tester-Pro-1.html.
Автор этой статьи пошел этим же путем. Причем он также вначале делал просто плату стабилизатора тока, а измерял ток и падение напряжения тестером. Но также, посчитав это неудобным, он применил микроконтроллер для измерения вместо тестера. Идея мне очень понравилась. Но, так как автор не выкладывал прошивку, пришлось писать ее самому. Заодно и изучил использование АЦП в микроконтроллере. По функционалу получившийся тестер на 99% аналогичен тестеру, приведенному в статье. Я добавил режим индикации короткого замыкания на измерительных площадках для подключения светодиода.

Тестер умеет:
- измерять и выводить на дисплей падение напряжения на светодиоде или p-n переход;
- измерять и выводить на дисплей протекающий через светодиод ток;
- рассчитывать сопротивление гасящего резистора в цепи светодиода при заданном напряжении источника питания (режим встроенного калькулятора);
- отображает приглашение на подключение светодиода;
- отображает короткое замыкание клемм.

В качестве микроконтроллера применил ATmega8A в корпусе TQFP . Он был в наличии. Вообще в устройстве постарался применить детали, которые можно наковырять с б/у материнских плат и прочего компьютерного (и не только) барахла. Дисплей 8х2 тоже был в наличии. Я использовал без подсветки, чтобы не тратить энергию батареи.
Долго думал с питанием. У автора применена 9 В батарея. Я их очень не люблю. И в первую очередь от ее цены, а во вторую – из-за ее емкости. После взвешивания всех «За» и «Против» пришел к выводу, что не стоит городить питание от лития. И тем более использовать элементы АА или ААА. Данный тестер действительно нужен нечасто и одной батарейки хватит на несколько лет в обычной радиолюбительской практике.

Рассмотрим схему.

Напряжение с батареи через выключатель подается на стабилизатор тока, выполненный на микросхеме U2. Применен регулируемый стабилизатор, который выпаян с первой попавшейся б/у материнки. С нее же взяты все конденсаторы 100нФ типоразмера 0603, конденсатор 1 мкФ (1… 10 мкФ, что найдете) типоразмера 0805, резисторы 10 кОм типоразмера 0603.
Желательно применить в качестве резисторов R3, R4, R5 резисторы с 1% точностью.
Резистором R1 регулируется ток. Пределы регулировки составляют от 2 до 26 мА, что вполне достаточно для большинства светодиодов.
Стабилизатор U1 обеспечивает питанием микроконтроллер. Вместо указанного на схеме можно применить любой LDO стабилизатор с выходным напряжением 5 В.
Измерение протекающего через светодиод тока и падения напряжения на нем возложено на микроконтроллер ATmega8A. Вся информация отображается на вот на таком LCD дисплее.

Так как на нем мало места, это повлияло на способ отображения информации. В частности применен такой же символ «мА» для указания тока и ограничена величина напряжения источника питания, которая задается для калькулятора, на уровне 9,9 В.
Резисторы R8, R9 на схеме указаны без номинала. Их надо предварительно подобрать по необходимому контрасту на дисплее. Для моего индикатора (как впрочем и для большинства китайских дисплеев) R8 не установлен, а в качестве R9 установлена перемычка.
Резистором R6 задается напряжение источника питания для калькулятора.

Тестер отображает следующие данные.

В первой строчке отображается падение напряжения на светодиоде и ток, протекающий через него.
Во второй строчке – расчетное напряжение источника питания светодиода и минимальное расчетное сопротивление гасящего резистора на основе измеренных параметров светодиода.

Расположение элементов на плате.
Сторона деталей (верх платы)

Нижняя сторона.

Фото собранной платы.

После отмывки и проверки монтажа к плате припаивается дисплей.

Примеры измерений.
Светодиод.

Диод Шоттки.

Приглашение

Короткое замыкание.

Русского языка нет, так как не получилось придумать коротких названий без сокращений, чтобы влезали на этот дисплей.
PS. На фото отсутствует подстроечный резистор R1 500 Ом. Еще не приехал от китайских товарищей. Вместо него временно перемычка, поэтому ток максимальный.

Фьюзы.

Чертежи платы и схемы в программе Diptrace, а также прошивка в прикрепленном файле.

 

Ну и напоследок хочу показать очень интересный тестер от китайских товарищей (НЕ РЕКЛАМА! Я бы сам собрал с удовольствием такой же, если была бы схема).

Который позволяет проверять как отдельные светодиоды так и линейки из светодиодов. И может выдавать напряжение где-то до 200 В автоматически. Подробнее о нем можно почитать в интернете https://mysku.ru/blog/china-stores/40849.html

У него один недостаток – цена в районе 3,5 тыс. руб. И он больше пригодится ремонтнику, чем простому радиолюбителю.


Файлы:
Схема, плата, файл прошивки


Все вопросы в Форум.


ID: 2515